2023-11-18 18:40:08 -05:00

300 lines
13 KiB
C++

/**
* @file include/lemlib/chassis/chassis.hpp
* @author LemLib Team
* @brief Chassis class declarations
* @version 0.4.5
* @date 2023-01-23
*
* @copyright Copyright (c) 2023
*
*/
#pragma once
#include <functional>
#include "pros/rtos.hpp"
#include "pros/motors.hpp"
#include "pros/imu.hpp"
#include "lemlib/asset.hpp"
#include "lemlib/chassis/trackingWheel.hpp"
#include "lemlib/pose.hpp"
namespace lemlib {
/**
* @brief Struct containing all the sensors used for odometry
*
*/
struct OdomSensors {
/**
* The sensors are stored in a struct so that they can be easily passed to the chassis class
* The variables are pointers so that they can be set to nullptr if they are not used
* Otherwise the chassis class would have to have a constructor for each possible combination of sensors
*
* @param vertical1 pointer to the first vertical tracking wheel
* @param vertical2 pointer to the second vertical tracking wheel
* @param horizontal1 pointer to the first horizontal tracking wheel
* @param horizontal2 pointer to the second horizontal tracking wheel
* @param imu pointer to the IMU
*/
OdomSensors(TrackingWheel* vertical1, TrackingWheel* vertical2, TrackingWheel* horizontal1,
TrackingWheel* horizontal2, pros::Imu* imu);
TrackingWheel* vertical1;
TrackingWheel* vertical2;
TrackingWheel* horizontal1;
TrackingWheel* horizontal2;
pros::Imu* imu;
};
/**
* @brief Struct containing constants for a chassis controller
*
*/
struct ControllerSettings {
/**
* The constants are stored in a struct so that they can be easily passed to the chassis class
* Set a constant to 0 and it will be ignored
*
* @param kP proportional constant for the chassis controller
* @param kD derivative constant for the chassis controller
* @param smallError the error at which the chassis controller will switch to a slower control loop
* @param smallErrorTimeout the time the chassis controller will wait before switching to a slower control loop
* @param largeError the error at which the chassis controller will switch to a faster control loop
* @param largeErrorTimeout the time the chassis controller will wait before switching to a faster control loop
* @param slew the maximum acceleration of the chassis controller
*/
ControllerSettings(float kP, float kD, float smallError, float smallErrorTimeout, float largeError,
float largeErrorTimeout, float slew);
float kP;
float kD;
float smallError;
float smallErrorTimeout;
float largeError;
float largeErrorTimeout;
float slew;
};
/**
* @brief Struct containing constants for a drivetrain
*
*/
struct Drivetrain {
/**
* The constants are stored in a struct so that they can be easily passed to the chassis class
* Set a constant to 0 and it will be ignored
*
* @param leftMotors pointer to the left motors
* @param rightMotors pointer to the right motors
* @param trackWidth the track width of the robot
* @param wheelDiameter the diameter of the wheel used on the drivetrain
* @param rpm the rpm of the wheels
* @param chasePower higher values make the robot move faster but causes more overshoot on turns
*/
Drivetrain(pros::MotorGroup* leftMotors, pros::MotorGroup* rightMotors, float trackWidth, float wheelDiameter,
float rpm, float chasePower);
pros::Motor_Group* leftMotors;
pros::Motor_Group* rightMotors;
float trackWidth;
float wheelDiameter;
float rpm;
float chasePower;
};
/**
* @brief Function pointer type for drive curve functions.
* @param input The control input in the range [-127, 127].
* @param scale The scaling factor, which can be optionally ignored.
* @return The new value to be used.
*/
typedef std::function<float(float, float)> DriveCurveFunction_t;
/**
* @brief Default drive curve. Modifies the input with an exponential curve. If the input is 127, the function
* will always output 127, no matter the value of scale, likewise for -127. This curve was inspired by team
* 5225, the Pilons. A Desmos graph of this curve can be found here:
* https://www.desmos.com/calculator/rcfjjg83zx
* @param input value from -127 to 127
* @param scale how steep the curve should be.
* @return The new value to be used.
*/
float defaultDriveCurve(float input, float scale);
/**
* @brief Chassis class
*
*/
class Chassis {
public:
/**
* @brief Construct a new Chassis
*
* @param drivetrain drivetrain to be used for the chassis
* @param linearSettings settings for the linear controller
* @param angularSettings settings for the angular controller
* @param sensors sensors to be used for odometry
* @param driveCurve drive curve to be used. defaults to `defaultDriveCurve`
*/
Chassis(Drivetrain drivetrain, ControllerSettings linearSettings, ControllerSettings angularSettings,
OdomSensors sensors, DriveCurveFunction_t driveCurve = &defaultDriveCurve);
/**
* @brief Calibrate the chassis sensors
*
* @param calibrateIMU whether the IMU should be calibrated. true by default
*/
void calibrate(bool calibrateIMU = true);
/**
* @brief Set the pose of the chassis
*
* @param x new x value
* @param y new y value
* @param theta new theta value
* @param radians true if theta is in radians, false if not. False by default
*/
void setPose(float x, float y, float theta, bool radians = false);
/**
* @brief Set the pose of the chassis
*
* @param pose the new pose
* @param radians whether pose theta is in radians (true) or not (false). false by default
*/
void setPose(Pose pose, bool radians = false);
/**
* @brief Get the pose of the chassis
*
* @param radians whether theta should be in radians (true) or degrees (false). false by default
* @return Pose
*/
Pose getPose(bool radians = false);
/**
* @brief Get the speed of the robot
*
* @param radians true for theta in radians, false for degrees. False by default
* @return lemlib::Pose
*/
Pose getSpeed(bool radians = false);
/**
* @brief Get the local speed of the robot
*
* @param radians true for theta in radians, false for degrees. False by default
* @return lemlib::Pose
*/
Pose getLocalSpeed(bool radians = false);
/**
* @brief Estimate the pose of the robot after a certain amount of time
*
* @param time time in seconds
* @param radians False for degrees, true for radians. False by default
* @return lemlib::Pose
*/
Pose estimatePose(float time, bool radians = false);
/**
* @brief Wait until the robot has traveled a certain distance along the path
*
* @note Units are in inches if current motion is moveTo or follow, degrees if using turnTo
*
* @param dist the distance the robot needs to travel before returning
*/
void waitUntil(float dist);
/**
* @brief Wait until the robot has completed the path
*
*/
void waitUntilDone();
/**
* @brief Turn the chassis so it is facing the target point
*
* The PID logging id is "angularPID"
*
* @param x x location
* @param y y location
* @param timeout longest time the robot can spend moving
* @param forwards whether the robot should turn to face the point with the front of the robot. true by
* default
* @param maxSpeed the maximum speed the robot can turn at. Default is 127
* @param async whether the function should be run asynchronously. true by default
*/
void turnTo(float x, float y, int timeout, bool forwards = true, float maxSpeed = 127, bool async = true);
/**
* @brief Move the chassis towards the target pose
*
* Uses the boomerang controller
*
* @param x x location
* @param y y location
* @param theta target heading in degrees.
* @param timeout longest time the robot can spend moving
* @param forwards whether the robot should move forwards or backwards. true for forwards (default),
* false for backwards
* @param chasePower higher values make the robot move faster but causes more overshoot on turns. 0
* makes it default to global value
* @param lead the lead parameter. Determines how curved the robot will move. 0.6 by default (0 < lead <
* 1)
* @param maxSpeed the maximum speed the robot can move at. 127 at default
* @param async whether the function should be run asynchronously. true by default
*/
void moveTo(float x, float y, float theta, int timeout, bool forwards = true, float chasePower = 0,
float lead = 0.6, float maxSpeed = 127, bool async = true);
/**
* @brief Move the chassis towards a target point
*
* @param x x location
* @param y y location
* @param timeout longest time the robot can spend moving
* @param async whether the function should be run asynchronously. false by default
* @param maxSpeed the maximum speed the robot can move at. 127 by default
*/
void moveToOld(float x, float y, int timeout, bool forwards = true, bool async = false, float maxSpeed = 127);
/**
* @brief Move the chassis along a path
*
* @param path the path asset to follow
* @param lookahead the lookahead distance. Units in inches. Larger values will make the robot move
* faster but will follow the path less accurately
* @param timeout the maximum time the robot can spend moving
* @param forwards whether the robot should follow the path going forwards. true by default
* @param async whether the function should be run asynchronously. true by default
*/
void follow(const asset& path, float lookahead, int timeout, bool forwards = true, bool async = true);
/**
* @brief Control the robot during the driver control period using the tank drive control scheme. In
* this control scheme one joystick axis controls one half of the robot, and another joystick axis
* controls another.
* @param left speed of the left side of the drivetrain. Takes an input from -127 to 127.
* @param right speed of the right side of the drivetrain. Takes an input from -127 to 127.
* @param curveGain control how steep the drive curve is. The larger the number, the steeper the curve.
* A value of 0 disables the curve entirely.
*/
void tank(int left, int right, float curveGain = 0.0);
/**
* @brief Control the robot during the driver using the arcade drive control scheme. In this control
* scheme one joystick axis controls the forwards and backwards movement of the robot, while the other
* joystick axis controls the robot's turning
* @param throttle speed to move forward or backward. Takes an input from -127 to 127.
* @param turn speed to turn. Takes an input from -127 to 127.
* @param curveGain the scale inputted into the drive curve function. If you are using the default drive
* curve, refer to the `defaultDriveCurve` documentation.
*/
void arcade(int throttle, int turn, float curveGain = 0.0);
/**
* @brief Control the robot during the driver using the curvature drive control scheme. This control
* scheme is very similar to arcade drive, except the second joystick axis controls the radius of the
* curve that the drivetrain makes, rather than the speed. This means that the driver can accelerate in
* a turn without changing the radius of that turn. This control scheme defaults to arcade when forward
* is zero.
* @param throttle speed to move forward or backward. Takes an input from -127 to 127.
* @param turn speed to turn. Takes an input from -127 to 127.
* @param curveGain the scale inputted into the drive curve function. If you are using the default drive
* curve, refer to the `defaultDriveCurve` documentation.
*/
void curvature(int throttle, int turn, float cureGain = 0.0);
private:
pros::Mutex mutex;
float distTravelled = 0;
ControllerSettings linearSettings;
ControllerSettings angularSettings;
Drivetrain drivetrain;
OdomSensors sensors;
DriveCurveFunction_t driveCurve;
};
} // namespace lemlib