290 lines
7.9 KiB
C++
290 lines
7.9 KiB
C++
#include "superstructure.hpp"
|
|
|
|
using namespace ary;
|
|
using namespace globals;
|
|
|
|
bool ptoEnabled = false;
|
|
bool wingsOpen = false;
|
|
|
|
/*
|
|
SCALE SPEEDS: Determines what percentage speeds of autonomous movements should move at
|
|
speedScale -> The scale of how fast the drivetrain goes forward and backwards
|
|
turnScale -> The scale of how fast the drivetrain turns
|
|
swingScale -> The scale of fast one side of the chassis moves
|
|
*/
|
|
double speedScale = 1.0;
|
|
double turnScale = 1.0;
|
|
double swingScale = 1.0;
|
|
|
|
double intakeSpeed = 0;
|
|
|
|
namespace superstruct
|
|
{
|
|
void chassisInit()
|
|
{
|
|
/*
|
|
When the robot first starts up we want to do a couple things:
|
|
- Adjust the drivetrain curve bottons so it does not interfere with any of the driver controls.
|
|
- Enable the joystick curve
|
|
- Enable active break on the drive
|
|
- Active break is a P controller applied to the drivetrain in order to help it maintain it's position, resisting external forces.
|
|
-
|
|
*/
|
|
|
|
chassis.set_curve_buttons(pros::E_CONTROLLER_DIGITAL_LEFT, pros::E_CONTROLLER_DIGITAL_RIGHT);
|
|
chassis.toggle_modify_curve_with_controller(true);
|
|
chassis.set_active_brake(0.1);
|
|
chassis.set_curve_default(1.075, 1.075);
|
|
|
|
/* Adjust the adjust the factor by which the drive velocity is adjusted */
|
|
chassis.set_joystick_drivescale(1.0);
|
|
chassis.set_joystick_turnscale(1.0);
|
|
}
|
|
|
|
void opControlInit()
|
|
{
|
|
motorsCoast();
|
|
disableActiveBrake();
|
|
}
|
|
|
|
// Adjust exit conditions to allow for quick movements
|
|
void configureExitConditions()
|
|
{
|
|
chassis.set_exit_condition(chassis.turn_exit, 45, 2, 150, 3, 435, 435);
|
|
chassis.set_exit_condition(chassis.swing_exit, 100, 3, 400, 7, 435, 435);
|
|
chassis.set_exit_condition(chassis.drive_exit, 35, 80, 200, 150, 435, 435);
|
|
}
|
|
|
|
// Adjust PID constants for accurate movements
|
|
void configureConstants()
|
|
{
|
|
chassis.set_slew_min_power(80, 80);
|
|
chassis.set_slew_distance(7, 7);
|
|
chassis.set_pid_constants(&chassis.headingPID, 16, 0, 52, 0);
|
|
chassis.set_pid_constants(&chassis.forward_drivePID, 3, 0, 18, 0);
|
|
chassis.set_pid_constants(&chassis.backward_drivePID, 3, 0, 18, 0);
|
|
chassis.set_pid_constants(&chassis.turnPID, 8, 0.001, 80, 15);
|
|
chassis.set_pid_constants(&chassis.swingPID, 8.5, 0, 50, 0);
|
|
}
|
|
|
|
// Prepare the bot for the autonomous period of a match
|
|
void autonomousResets()
|
|
{
|
|
chassis.reset_pid_targets();
|
|
chassis.reset_gyro();
|
|
chassis.reset_drive_sensor();
|
|
configureConstants();
|
|
configureExitConditions();
|
|
motorsBrake();
|
|
}
|
|
|
|
void motorsCoast()
|
|
{
|
|
chassis.set_drive_brake(MOTOR_BRAKE_COAST);
|
|
}
|
|
|
|
void motorsHold()
|
|
{
|
|
chassis.set_drive_brake(MOTOR_BRAKE_HOLD);
|
|
}
|
|
|
|
void motorsBrake()
|
|
{
|
|
chassis.set_drive_brake(MOTOR_BRAKE_BRAKE);
|
|
}
|
|
|
|
// The chassis will not apply a constant voltage to prevent it from being moved
|
|
void disableActiveBrake()
|
|
{
|
|
chassis.set_active_brake(0.0);
|
|
}
|
|
|
|
void handleIntake() {
|
|
while (true) {
|
|
intake_mtr.move_voltage(intakeSpeed);
|
|
pros::delay(ary::util::DELAY_TIME);
|
|
}
|
|
}
|
|
|
|
pros::Task intakeManager(handleIntake);
|
|
|
|
// Drives forward, runs next commands WITHOUT waiting for the drive to complete
|
|
void driveAsync(double dist, bool useHeadingCorrection)
|
|
{
|
|
chassis.set_drive(dist, DRIVE_SPEED * speedScale, (dist > 14.0) ? true : false, useHeadingCorrection);
|
|
}
|
|
|
|
// Drives forward, runs next commands AFTER waiting for the drive to complete
|
|
void driveSync(double dist, bool useHeadingCorrection)
|
|
{
|
|
chassis.set_drive(dist, DRIVE_SPEED * speedScale, (dist > 14.0) ? true : false, useHeadingCorrection);
|
|
chassis.wait_drive();
|
|
}
|
|
|
|
// Drives forward, runs next commands AFTER reaching a certain measurement/error along the path
|
|
void driveWithMD(double dist, bool useHeadingCorrection, double waitUntilDist)
|
|
{
|
|
chassis.set_drive(dist, DRIVE_SPEED * speedScale, (dist > 14.0) ? true : false, useHeadingCorrection);
|
|
chassis.wait_until(waitUntilDist);
|
|
}
|
|
|
|
// Turns the chassis, runs other commands after it has run.
|
|
void turnSync(double theta)
|
|
{
|
|
chassis.set_turn(theta, TURN_SPEED * turnScale);
|
|
chassis.wait_drive();
|
|
}
|
|
|
|
// Turns the chassis, runs other commands immediately after call
|
|
void turnAsync(double theta)
|
|
{
|
|
chassis.set_turn(theta, TURN_SPEED * turnScale);
|
|
}
|
|
|
|
// Moves only the right side of the chassis so it can make a left turn
|
|
void leftSwing(double theta)
|
|
{
|
|
chassis.set_swing(LEFT_SWING, theta, SWING_SPEED * swingScale);
|
|
}
|
|
|
|
// Moves only the left side of the chassis so it can make a right turn
|
|
void rightSwing(double theta)
|
|
{
|
|
chassis.set_swing(RIGHT_SWING, theta, SWING_SPEED * swingScale);
|
|
}
|
|
|
|
/*
|
|
Each of the scale values must be clamed between 0.1 - 1 (10% to 100%) to avoid saturation of motors.
|
|
*/
|
|
|
|
void setDriveScale(double val)
|
|
{
|
|
speedScale = std::clamp(val, 0.1, 1.0);
|
|
}
|
|
|
|
void setTurnScale(double val)
|
|
{
|
|
turnScale = std::clamp(val, 0.1, 1.0);
|
|
}
|
|
|
|
void setSwingScale(double val)
|
|
{
|
|
swingScale = std::clamp(val, 0.1, 1.0); //
|
|
}
|
|
|
|
// Structure methods
|
|
void togglePto(bool toggle)
|
|
{
|
|
ptoEnabled = toggle;
|
|
chassis.pto_toggle({intake_mtr, cata_mtr}, toggle); // Configure the listed PTO motors to whatever value toggle is.
|
|
pto_piston.set_value(toggle);
|
|
|
|
if (toggle)
|
|
{
|
|
intake_mtr.set_brake_mode(MOTOR_BRAKE_COAST);
|
|
cata_mtr.set_brake_mode(MOTOR_BRAKE_COAST);
|
|
}
|
|
}
|
|
|
|
void runCata(double inpt)
|
|
{
|
|
if (!ptoEnabled)
|
|
return;
|
|
cata_mtr.move_voltage(inpt);
|
|
}
|
|
|
|
void setIntakeSpeed(double inpt)
|
|
{
|
|
if (!ptoEnabled) {
|
|
intakeSpeed = 0;
|
|
} else {
|
|
intakeSpeed = inpt;
|
|
}
|
|
|
|
}
|
|
|
|
int lock = 0;
|
|
void subsysControl(pros::controller_digital_e_t ptoToggleButton, pros::controller_digital_e_t cataRunButton, pros::controller_digital_e_t intakeButton, pros::controller_digital_e_t outtakeButton)
|
|
{
|
|
if (globals::master.get_digital(ptoToggleButton) && lock == 0)
|
|
{ // If the PTO button has been pressed and the PTO is not engaged
|
|
togglePto(!ptoEnabled); // Toggle the PTO so that cataput is useable
|
|
lock = 1;
|
|
}
|
|
else if (!globals::master.get_digital(ptoToggleButton))
|
|
{
|
|
lock = 0;
|
|
}
|
|
|
|
if (globals::master.get_digital(cataRunButton))
|
|
{
|
|
runCata(-12000);
|
|
}
|
|
else
|
|
{
|
|
runCata(0);
|
|
}
|
|
|
|
if (globals::master.get_digital(intakeButton))
|
|
{
|
|
setIntakeSpeed(-12000);
|
|
}
|
|
else if (globals::master.get_digital(outtakeButton))
|
|
{
|
|
setIntakeSpeed(12000);
|
|
}
|
|
else
|
|
{
|
|
setIntakeSpeed(0);
|
|
}
|
|
}
|
|
|
|
void wingsControl(pros::controller_digital_e_t wingControlButton)
|
|
{
|
|
if (globals::master.get_digital_new_press(wingControlButton))
|
|
{
|
|
if (wings.getState() == 0) // A value of 0 indicates that both wings are closed
|
|
wings.open();
|
|
else if (wings.getState() == 3) // A value of 3 indicates that both wings are open
|
|
wings.close();
|
|
}
|
|
}
|
|
|
|
void actuateClimb()
|
|
{
|
|
climb_piston_one.set_value(1);
|
|
climb_piston_two.set_value(1);
|
|
}
|
|
|
|
void climbControl(pros::controller_digital_e_t but1, pros::controller_digital_e_t but2)
|
|
{
|
|
if (globals::master.get_digital(but1) && globals::master.get_digital(but2))
|
|
{
|
|
actuateClimb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Controls -> For whoever is controlling the robot
|
|
*/
|
|
void renu_control()
|
|
{
|
|
subsysControl(RENU_PTO_TOGGLE, RENU_CATA_CONTROL, RENU_INTAKE_CONTROL_INTAKE, RENU_INTAKE_CONTROL_OUTTAKE);
|
|
wingsControl(RENU_WING_CONTROL);
|
|
climbControl(RENU_CLIMB_CONTROL_ONE, RENU_CLIMB_CONTROL_TWO);
|
|
}
|
|
|
|
void ria_control()
|
|
{
|
|
subsysControl(RENU_PTO_TOGGLE, RENU_CATA_CONTROL, RENU_INTAKE_CONTROL_INTAKE, RENU_INTAKE_CONTROL_OUTTAKE);
|
|
wingsControl(RENU_WING_CONTROL);
|
|
climbControl(RENU_CLIMB_CONTROL_ONE, RENU_CLIMB_CONTROL_TWO);
|
|
}
|
|
|
|
void chris_control()
|
|
{
|
|
subsysControl(RENU_PTO_TOGGLE, RENU_CATA_CONTROL, RENU_INTAKE_CONTROL_INTAKE, RENU_INTAKE_CONTROL_OUTTAKE);
|
|
wingsControl(RENU_WING_CONTROL);
|
|
climbControl(RENU_CLIMB_CONTROL_ONE, RENU_CLIMB_CONTROL_TWO);
|
|
}
|
|
} |