142 lines
4.7 KiB
C#
142 lines
4.7 KiB
C#
using Graphing.Abstract;
|
|
using Graphing.Forms;
|
|
using Graphing.Parts;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
|
|
namespace Graphing.Graphables;
|
|
|
|
public class IntegralEquation : Graphable, IIntegrable, IDerivable
|
|
{
|
|
protected readonly Equation baseEqu;
|
|
protected readonly EquationDelegate baseEquDel;
|
|
|
|
public IntegralEquation(Equation baseEquation)
|
|
{
|
|
string oldName = baseEquation.Name, newName;
|
|
if (oldName.StartsWith("Integral of ")) newName = "Second Integral of " + oldName[12..];
|
|
else if (oldName.StartsWith("Second Integral of ")) newName = "Third Integral of " + oldName[19..];
|
|
else newName = "Integral of " + oldName;
|
|
|
|
Name = newName;
|
|
|
|
baseEqu = baseEquation;
|
|
baseEquDel = baseEquation.GetDelegate();
|
|
}
|
|
|
|
public override Graphable DeepCopy() => new IntegralEquation(baseEqu);
|
|
|
|
public override IEnumerable<IGraphPart> GetItemsToRender(in GraphForm graph)
|
|
{
|
|
const int step = 10;
|
|
double epsilon = Math.Abs(graph.ScreenSpaceToGraphSpace(new Int2(0, 0)).x
|
|
- graph.ScreenSpaceToGraphSpace(new Int2(step / 2, 0)).x) / 5;
|
|
epsilon *= graph.DpiFloat / 192;
|
|
List<IGraphPart> lines = [];
|
|
|
|
Int2 originLocation = graph.GraphSpaceToScreenSpace(new Float2(0, 0));
|
|
|
|
if (originLocation.x < 0)
|
|
{
|
|
// Origin is off the left side of the screen.
|
|
// Get to the left side from the origin.
|
|
double previousY = 0;
|
|
double start = graph.MinVisibleGraph.x, end = graph.MaxVisibleGraph.x;
|
|
for (double x = 0; x <= start; x += epsilon) previousY += baseEquDel(x) * epsilon;
|
|
|
|
// Now we can start.
|
|
double previousX = start;
|
|
|
|
for (double x = start; x <= end; x += epsilon)
|
|
{
|
|
double currentX = x, currentY = previousY + baseEquDel(x) * epsilon;
|
|
lines.Add(new GraphLine(new Float2(previousX, previousY), new Float2(currentX, currentY)));
|
|
|
|
previousX = currentX;
|
|
previousY = currentY;
|
|
}
|
|
}
|
|
else if (originLocation.x > graph.ClientRectangle.Width)
|
|
{
|
|
// Origin is off the right side of the screen.
|
|
// Get to the right side of the origin.
|
|
double previousY = 0;
|
|
double start = graph.MaxVisibleGraph.x, end = graph.MinVisibleGraph.x;
|
|
for (double x = 0; x >= start; x -= epsilon) previousY -= baseEquDel(x) * epsilon;
|
|
|
|
// Now we can start.
|
|
double previousX = start;
|
|
|
|
for (double x = start; x >= end; x -= epsilon)
|
|
{
|
|
double currentX = x, currentY = previousY - baseEquDel(x) * epsilon;
|
|
lines.Add(new GraphLine(new Float2(previousX, previousY), new Float2(currentX, currentY)));
|
|
|
|
previousX = currentX;
|
|
previousY = currentY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Origin is on-screen.
|
|
// We need to do two cycles.
|
|
|
|
// Start with right.
|
|
double start = 0, end = graph.MaxVisibleGraph.x;
|
|
double previousX = start;
|
|
double previousY = 0;
|
|
|
|
for (double x = start; x <= end; x += epsilon)
|
|
{
|
|
double currentX = x, currentY = previousY + baseEquDel(x) * epsilon;
|
|
lines.Add(new GraphLine(new Float2(previousX, previousY), new Float2(currentX, currentY)));
|
|
|
|
previousX = currentX;
|
|
previousY = currentY;
|
|
}
|
|
|
|
// Now do left.
|
|
start = 0;
|
|
end = graph.MinVisibleGraph.x;
|
|
previousX = start;
|
|
previousY = 0;
|
|
|
|
for (double x = start; x >= end; x -= epsilon)
|
|
{
|
|
double currentX = x, currentY = previousY - baseEquDel(x) * epsilon;
|
|
lines.Add(new GraphLine(new Float2(previousX, previousY), new Float2(currentX, currentY)));
|
|
|
|
previousX = currentX;
|
|
previousY = currentY;
|
|
}
|
|
}
|
|
|
|
return lines;
|
|
}
|
|
|
|
public Equation AsEquation() => new(IntegralAtPoint)
|
|
{
|
|
Name = Name,
|
|
Color = Color
|
|
};
|
|
|
|
public Equation Derive() => (Equation)baseEqu.DeepCopy();
|
|
public IntegralEquation Integrate() => AsEquation().Integrate();
|
|
|
|
// Standard integral method.
|
|
// Inefficient for successive calls.
|
|
public double IntegralAtPoint(double x)
|
|
{
|
|
EquationDelegate equ = baseEqu.GetDelegate();
|
|
|
|
double start = Math.Min(0, x), end = Math.Max(0, x);
|
|
const double step = 1e-3;
|
|
double sum = 0;
|
|
|
|
for (double t = start; t <= end; t += step) sum += equ(t) * step;
|
|
if (x < 0) sum = -sum;
|
|
|
|
return sum;
|
|
}
|
|
}
|