2021-09-09 20:42:29 -04:00

1087 lines
51 KiB
C#

using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using UnityEngine.Experimental.Rendering;
namespace UnityEngine.Rendering.HighDefinition
{
// Optimized version of 'DensityVolumeArtistParameters'.
// TODO: pack better. This data structure contains a bunch of UNORMs.
[GenerateHLSL]
struct DensityVolumeEngineData
{
public Vector3 scattering; // [0, 1]
public float extinction; // [0, 1]
public Vector3 textureTiling;
public int textureIndex;
public Vector3 textureScroll;
public int invertFade; // bool...
public Vector3 rcpPosFaceFade;
public float rcpDistFadeLen;
public Vector3 rcpNegFaceFade;
public float endTimesRcpDistFadeLen;
public static DensityVolumeEngineData GetNeutralValues()
{
DensityVolumeEngineData data;
data.scattering = Vector3.zero;
data.extinction = 0;
data.textureIndex = -1;
data.textureTiling = Vector3.one;
data.textureScroll = Vector3.zero;
data.rcpPosFaceFade = new Vector3(float.MaxValue, float.MaxValue, float.MaxValue);
data.rcpNegFaceFade = new Vector3(float.MaxValue, float.MaxValue, float.MaxValue);
data.invertFade = 0;
data.rcpDistFadeLen = 0;
data.endTimesRcpDistFadeLen = 1;
return data;
}
} // struct VolumeProperties
[GenerateHLSL(needAccessors = false, generateCBuffer = true)]
unsafe struct ShaderVariablesVolumetric
{
[HLSLArray(ShaderConfig.k_XRMaxViewsForCBuffer, typeof(Matrix4x4))]
public fixed float _VBufferCoordToViewDirWS[ShaderConfig.k_XRMaxViewsForCBuffer * 16];
public float _VBufferUnitDepthTexelSpacing;
public uint _NumVisibleDensityVolumes;
public float _CornetteShanksConstant;
public uint _VBufferHistoryIsValid;
public Vector4 _VBufferSampleOffset;
public Vector4 _VolumeMaskDimensions;
[HLSLArray(7, typeof(Vector4))]
public fixed float _AmbientProbeCoeffs[7 * 4]; // 3 bands of SH, packed, rescaled and convolved with the phase function
public float _VBufferVoxelSize;
public float _HaveToPad;
public float _OtherwiseTheBuffer;
public float _IsFilledWithGarbage;
public Vector4 _VBufferPrevViewportSize;
public Vector4 _VBufferHistoryViewportScale;
public Vector4 _VBufferHistoryViewportLimit;
public Vector4 _VBufferPrevDistanceEncodingParams;
public Vector4 _VBufferPrevDistanceDecodingParams;
// TODO: Remove if equals to the ones in global CB?
public uint _NumTileBigTileX;
public uint _NumTileBigTileY;
public uint _Pad0_SVV;
public uint _Pad1_SVV;
}
class VolumeRenderingUtils
{
public static float MeanFreePathFromExtinction(float extinction)
{
return 1.0f / extinction;
}
public static float ExtinctionFromMeanFreePath(float meanFreePath)
{
return 1.0f / meanFreePath;
}
public static Vector3 AbsorptionFromExtinctionAndScattering(float extinction, Vector3 scattering)
{
return new Vector3(extinction, extinction, extinction) - scattering;
}
public static Vector3 ScatteringFromExtinctionAndAlbedo(float extinction, Vector3 albedo)
{
return extinction * albedo;
}
public static Vector3 AlbedoFromMeanFreePathAndScattering(float meanFreePath, Vector3 scattering)
{
return meanFreePath * scattering;
}
}
struct DensityVolumeList
{
public List<OrientedBBox> bounds;
public List<DensityVolumeEngineData> density;
}
struct VBufferParameters
{
public Vector3Int viewportSize;
public float voxelSize;
public Vector4 depthEncodingParams;
public Vector4 depthDecodingParams;
public VBufferParameters(Vector3Int viewportSize, float depthExtent, float camNear, float camFar, float camVFoV,
float sliceDistributionUniformity, float voxelSize)
{
this.viewportSize = viewportSize;
this.voxelSize = voxelSize;
// The V-Buffer is sphere-capped, while the camera frustum is not.
// We always start from the near plane of the camera.
float aspectRatio = viewportSize.x / (float)viewportSize.y;
float farPlaneHeight = 2.0f * Mathf.Tan(0.5f * camVFoV) * camFar;
float farPlaneWidth = farPlaneHeight * aspectRatio;
float farPlaneMaxDim = Mathf.Max(farPlaneWidth, farPlaneHeight);
float farPlaneDist = Mathf.Sqrt(camFar * camFar + 0.25f * farPlaneMaxDim * farPlaneMaxDim);
float nearDist = camNear;
float farDist = Math.Min(nearDist + depthExtent, farPlaneDist);
float c = 2 - 2 * sliceDistributionUniformity; // remap [0, 1] -> [2, 0]
c = Mathf.Max(c, 0.001f); // Avoid NaNs
depthEncodingParams = ComputeLogarithmicDepthEncodingParams(nearDist, farDist, c);
depthDecodingParams = ComputeLogarithmicDepthDecodingParams(nearDist, farDist, c);
}
internal Vector3 ComputeViewportScale(Vector3Int bufferSize)
{
return new Vector3(HDUtils.ComputeViewportScale(viewportSize.x, bufferSize.x),
HDUtils.ComputeViewportScale(viewportSize.y, bufferSize.y),
HDUtils.ComputeViewportScale(viewportSize.z, bufferSize.z));
}
internal Vector3 ComputeViewportLimit(Vector3Int bufferSize)
{
return new Vector3(HDUtils.ComputeViewportLimit(viewportSize.x, bufferSize.x),
HDUtils.ComputeViewportLimit(viewportSize.y, bufferSize.y),
HDUtils.ComputeViewportLimit(viewportSize.z, bufferSize.z));
}
internal float ComputeLastSliceDistance(uint sliceCount)
{
float d = 1.0f - 0.5f / sliceCount;
float ln2 = 0.69314718f;
// DecodeLogarithmicDepthGeneralized(1 - 0.5 / sliceCount)
return depthDecodingParams.x * Mathf.Exp(ln2 * d * depthDecodingParams.y) + depthDecodingParams.z;
}
// See EncodeLogarithmicDepthGeneralized().
static Vector4 ComputeLogarithmicDepthEncodingParams(float nearPlane, float farPlane, float c)
{
Vector4 depthParams = new Vector4();
float n = nearPlane;
float f = farPlane;
depthParams.y = 1.0f / Mathf.Log(c * (f - n) + 1, 2);
depthParams.x = Mathf.Log(c, 2) * depthParams.y;
depthParams.z = n - 1.0f / c; // Same
depthParams.w = 0.0f;
return depthParams;
}
// See DecodeLogarithmicDepthGeneralized().
static Vector4 ComputeLogarithmicDepthDecodingParams(float nearPlane, float farPlane, float c)
{
Vector4 depthParams = new Vector4();
float n = nearPlane;
float f = farPlane;
depthParams.x = 1.0f / c;
depthParams.y = Mathf.Log(c * (f - n) + 1, 2);
depthParams.z = n - 1.0f / c; // Same
depthParams.w = 0.0f;
return depthParams;
}
}
public partial class HDRenderPipeline
{
ComputeShader m_VolumeVoxelizationCS = null;
ComputeShader m_VolumetricLightingCS = null;
ComputeShader m_VolumetricLightingFilteringCS = null;
List<OrientedBBox> m_VisibleVolumeBounds = null;
List<DensityVolumeEngineData> m_VisibleVolumeData = null;
const int k_MaxVisibleVolumeCount = 512;
// Static keyword is required here else we get a "DestroyBuffer can only be called from the main thread"
ComputeBuffer m_VisibleVolumeBoundsBuffer = null;
ComputeBuffer m_VisibleVolumeDataBuffer = null;
// These two buffers do not depend on the frameID and are therefore shared by all views.
RTHandle m_DensityBuffer;
RTHandle m_LightingBuffer;
RTHandle m_MaxZMask8x;
RTHandle m_MaxZMask;
RTHandle m_DilatedMaxZMask;
Vector3Int m_CurrentVolumetricBufferSize;
ShaderVariablesVolumetric m_ShaderVariablesVolumetricCB = new ShaderVariablesVolumetric();
// Is the feature globally disabled?
bool m_SupportVolumetrics = false;
Vector4[] m_PackedCoeffs;
ZonalHarmonicsL2 m_PhaseZH;
Vector2[] m_xySeq;
// This is a sequence of 7 equidistant numbers from 1/14 to 13/14.
// Each of them is the centroid of the interval of length 2/14.
// They've been rearranged in a sequence of pairs {small, large}, s.t. (small + large) = 1.
// That way, the running average position is close to 0.5.
// | 6 | 2 | 4 | 1 | 5 | 3 | 7 |
// | | | | o | | | |
// | | o | | x | | | |
// | | x | | x | | o | |
// | | x | o | x | | x | |
// | | x | x | x | o | x | |
// | o | x | x | x | x | x | |
// | x | x | x | x | x | x | o |
// | x | x | x | x | x | x | x |
float[] m_zSeq = { 7.0f / 14.0f, 3.0f / 14.0f, 11.0f / 14.0f, 5.0f / 14.0f, 9.0f / 14.0f, 1.0f / 14.0f, 13.0f / 14.0f };
Matrix4x4[] m_PixelCoordToViewDirWS;
static internal void SafeDestroy(ref RenderTexture rt)
{
if (rt != null)
{
rt.Release(); // The texture itself is not destroyed: https://docs.unity3d.com/ScriptReference/RenderTexture.Release.html
Object.DestroyImmediate(rt); // Destroy() may not be called from the Edit mode
}
}
static uint VolumetricFrameIndex(HDCamera hdCamera)
{
// Here we do modulo 14 because we need the enable to detect a change every frame, but the accumulation is done on 7 frames (7x2=14)
return hdCamera.GetCameraFrameCount() % 14;
}
static internal Vector3Int ComputeVolumetricViewportSize(HDCamera hdCamera, ref float voxelSize)
{
var controller = hdCamera.volumeStack.GetComponent<Fog>();
Debug.Assert(controller != null);
int viewportWidth = hdCamera.actualWidth;
int viewportHeight = hdCamera.actualHeight;
float screenFraction;
int sliceCount;
if (controller.fogControlMode == FogControl.Balance)
{
// Evaluate the ssFraction and sliceCount based on the control parameters
float maxScreenSpaceFraction = (1.0f - controller.resolutionDepthRatio) * (Fog.maxFogScreenResolutionPercentage - Fog.minFogScreenResolutionPercentage) + Fog.minFogScreenResolutionPercentage;
screenFraction = Mathf.Lerp(Fog.minFogScreenResolutionPercentage, maxScreenSpaceFraction, controller.volumetricFogBudget) * 0.01f;
float maxSliceCount = Mathf.Max(1.0f, controller.resolutionDepthRatio * Fog.maxFogSliceCount);
sliceCount = (int)Mathf.Lerp(1.0f, maxSliceCount, controller.volumetricFogBudget);
// Evaluate the voxel size
voxelSize = 1.0f / screenFraction;
}
else
{
screenFraction = controller.screenResolutionPercentage.value * 0.01f;
sliceCount = controller.volumeSliceCount.value;
if (controller.screenResolutionPercentage.value == Fog.optimalFogScreenResolutionPercentage)
voxelSize = 8;
else
voxelSize = 1.0f / screenFraction; // Does not account for rounding (same function, above)
}
int w = Mathf.RoundToInt(viewportWidth * screenFraction);
int h = Mathf.RoundToInt(viewportHeight * screenFraction);
// Round to nearest multiple of viewCount so that each views have the exact same number of slices (important for XR)
int d = hdCamera.viewCount * Mathf.CeilToInt(sliceCount / hdCamera.viewCount);
return new Vector3Int(w, h, d);
}
static internal VBufferParameters ComputeVolumetricBufferParameters(HDCamera hdCamera)
{
var controller = hdCamera.volumeStack.GetComponent<Fog>();
Debug.Assert(controller != null);
float voxelSize = 0;
Vector3Int viewportSize = ComputeVolumetricViewportSize(hdCamera, ref voxelSize);
return new VBufferParameters(viewportSize, controller.depthExtent.value,
hdCamera.camera.nearClipPlane,
hdCamera.camera.farClipPlane,
hdCamera.camera.fieldOfView,
controller.sliceDistributionUniformity.value,
voxelSize);
}
static internal void ReinitializeVolumetricBufferParams(HDCamera hdCamera)
{
if (!Fog.IsVolumetricFogEnabled(hdCamera))
return;
bool fog = Fog.IsVolumetricFogEnabled(hdCamera);
bool init = hdCamera.vBufferParams != null;
if (fog ^ init)
{
if (init)
{
// Deinitialize.
hdCamera.vBufferParams = null;
}
else
{
// Initialize.
// Start with the same parameters for both frames. Then update them one by one every frame.
var parameters = ComputeVolumetricBufferParameters(hdCamera);
hdCamera.vBufferParams = new VBufferParameters[2];
hdCamera.vBufferParams[0] = parameters;
hdCamera.vBufferParams[1] = parameters;
}
}
}
// This function relies on being called once per camera per frame.
// The results are undefined otherwise.
static internal void UpdateVolumetricBufferParams(HDCamera hdCamera)
{
if (!Fog.IsVolumetricFogEnabled(hdCamera))
return;
Debug.Assert(hdCamera.vBufferParams != null);
Debug.Assert(hdCamera.vBufferParams.Length == 2);
var currentParams = ComputeVolumetricBufferParameters(hdCamera);
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
hdCamera.vBufferParams[currIdx] = currentParams;
// Handle case of first frame. When we are on the first frame, we reuse the value of original frame.
if (hdCamera.vBufferParams[prevIdx].viewportSize.x == 0.0f && hdCamera.vBufferParams[prevIdx].viewportSize.y == 0.0f)
{
hdCamera.vBufferParams[prevIdx] = currentParams;
}
}
// Do not access 'rt.name', it allocates memory every time...
// Have to manually cache and pass the name.
static internal void ResizeVolumetricBuffer(ref RTHandle rt, string name, int viewportWidth, int viewportHeight, int viewportDepth)
{
Debug.Assert(rt != null);
int width = rt.rt.width;
int height = rt.rt.height;
int depth = rt.rt.volumeDepth;
bool realloc = (width < viewportWidth) || (height < viewportHeight) || (depth < viewportDepth);
if (realloc)
{
RTHandles.Release(rt);
width = Math.Max(width, viewportWidth);
height = Math.Max(height, viewportHeight);
depth = Math.Max(depth, viewportDepth);
rt = RTHandles.Alloc(width, height, depth, colorFormat: GraphicsFormat.R16G16B16A16_SFloat, // 8888_sRGB is not precise enough
dimension: TextureDimension.Tex3D, enableRandomWrite: true, name: name);
}
}
struct GenerateMaxZParameters
{
public ComputeShader generateMaxZCS;
public int maxZKernel;
public int maxZDownsampleKernel;
public int dilateMaxZKernel;
public Vector2Int intermediateMaskSize;
public Vector2Int finalMaskSize;
public Vector2Int minDepthMipOffset;
public float dilationWidth;
public int viewCount;
}
GenerateMaxZParameters PrepareGenerateMaxZParameters(HDCamera hdCamera, HDUtils.PackedMipChainInfo depthMipInfo)
{
var parameters = new GenerateMaxZParameters();
parameters.generateMaxZCS = defaultResources.shaders.maxZCS;
parameters.maxZKernel = parameters.generateMaxZCS.FindKernel("ComputeMaxZ");
parameters.maxZDownsampleKernel = parameters.generateMaxZCS.FindKernel("ComputeFinalMask");
parameters.dilateMaxZKernel = parameters.generateMaxZCS.FindKernel("DilateMask");
parameters.intermediateMaskSize.x = HDUtils.DivRoundUp(hdCamera.actualWidth, 8);
parameters.intermediateMaskSize.y = HDUtils.DivRoundUp(hdCamera.actualHeight, 8);
parameters.finalMaskSize.x = parameters.intermediateMaskSize.x / 2;
parameters.finalMaskSize.y = parameters.intermediateMaskSize.y / 2;
parameters.minDepthMipOffset.x = depthMipInfo.mipLevelOffsets[4].x;
parameters.minDepthMipOffset.y = depthMipInfo.mipLevelOffsets[4].y;
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = frameIndex & 1;
var currentParams = hdCamera.vBufferParams[currIdx];
float ratio = (float)currentParams.viewportSize.x / (float)hdCamera.actualWidth;
parameters.dilationWidth = ratio < 0.1f ? 2 :
ratio < 0.5f ? 1 : 0;
parameters.viewCount = hdCamera.viewCount;
return parameters;
}
static void GenerateMaxZ(in GenerateMaxZParameters parameters, RTHandle depthTexture, RTHandle maxZ8x, RTHandle maxZ, RTHandle dilatedMaxZ, CommandBuffer cmd)
{
// --------------------------------------------------------------
// Downsample 8x8 with max operator
var cs = parameters.generateMaxZCS;
var kernel = parameters.maxZKernel;
int maskW = parameters.intermediateMaskSize.x;
int maskH = parameters.intermediateMaskSize.y;
int dispatchX = maskW;
int dispatchY = maskH;
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._OutputTexture, maxZ8x);
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._CameraDepthTexture, depthTexture);
cmd.DispatchCompute(cs, kernel, dispatchX, dispatchY, parameters.viewCount);
// --------------------------------------------------------------
// Downsample to 16x16 and compute gradient if required
kernel = parameters.maxZDownsampleKernel;
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._InputTexture, maxZ8x);
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._OutputTexture, maxZ);
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._CameraDepthTexture, depthTexture);
Vector4 srcLimitAndDepthOffset = new Vector4(
maskW,
maskH,
parameters.minDepthMipOffset.x,
parameters.minDepthMipOffset.y
);
cmd.SetComputeVectorParam(cs, HDShaderIDs._SrcOffsetAndLimit, srcLimitAndDepthOffset);
cmd.SetComputeFloatParam(cs, HDShaderIDs._DilationWidth, parameters.dilationWidth);
int finalMaskW = maskW / 2;
int finalMaskH = maskH / 2;
dispatchX = HDUtils.DivRoundUp(finalMaskW, 8);
dispatchY = HDUtils.DivRoundUp(finalMaskH, 8);
cmd.DispatchCompute(cs, kernel, dispatchX, dispatchY, parameters.viewCount);
// --------------------------------------------------------------
// Dilate max Z and gradient.
kernel = parameters.dilateMaxZKernel;
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._InputTexture, maxZ);
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._OutputTexture, dilatedMaxZ);
cmd.SetComputeTextureParam(cs, kernel, HDShaderIDs._CameraDepthTexture, depthTexture);
srcLimitAndDepthOffset.x = finalMaskW;
srcLimitAndDepthOffset.y = finalMaskH;
cmd.SetComputeVectorParam(cs, HDShaderIDs._SrcOffsetAndLimit, srcLimitAndDepthOffset);
cmd.DispatchCompute(cs, kernel, dispatchX, dispatchY, parameters.viewCount);
}
static internal void CreateVolumetricHistoryBuffers(HDCamera hdCamera, int bufferCount)
{
if (!Fog.IsVolumetricFogEnabled(hdCamera))
return;
Debug.Assert(hdCamera.volumetricHistoryBuffers == null);
hdCamera.volumetricHistoryBuffers = new RTHandle[bufferCount];
// Allocation happens early in the frame. So we shouldn't rely on 'hdCamera.vBufferParams'.
// Allocate the smallest possible 3D texture.
// We will perform rescaling manually, in a custom manner, based on volume parameters.
const int minSize = 4;
for (int i = 0; i < bufferCount; i++)
{
hdCamera.volumetricHistoryBuffers[i] = RTHandles.Alloc(minSize, minSize, minSize, colorFormat: GraphicsFormat.R16G16B16A16_SFloat, // 8888_sRGB is not precise enough
dimension: TextureDimension.Tex3D, enableRandomWrite: true, name: string.Format("VBufferHistory{0}", i));
}
hdCamera.volumetricHistoryIsValid = false;
}
static internal void DestroyVolumetricHistoryBuffers(HDCamera hdCamera)
{
if (hdCamera.volumetricHistoryBuffers == null)
return;
int bufferCount = hdCamera.volumetricHistoryBuffers.Length;
for (int i = 0; i < bufferCount; i++)
{
RTHandles.Release(hdCamera.volumetricHistoryBuffers[i]);
}
hdCamera.volumetricHistoryBuffers = null;
hdCamera.volumetricHistoryIsValid = false;
}
// Must be called AFTER UpdateVolumetricBufferParams.
static readonly string[] volumetricHistoryBufferNames = new string[2] { "VBufferHistory0", "VBufferHistory1" };
static internal void ResizeVolumetricHistoryBuffers(HDCamera hdCamera)
{
if (!hdCamera.IsVolumetricReprojectionEnabled())
return;
Debug.Assert(hdCamera.vBufferParams != null);
Debug.Assert(hdCamera.vBufferParams.Length == 2);
Debug.Assert(hdCamera.volumetricHistoryBuffers != null);
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
var currentParams = hdCamera.vBufferParams[currIdx];
// Render texture contents can become "lost" on certain events, like loading a new level,
// system going to a screensaver mode, in and out of fullscreen and so on.
// https://docs.unity3d.com/ScriptReference/RenderTexture.html
if (hdCamera.volumetricHistoryBuffers[0] == null || hdCamera.volumetricHistoryBuffers[1] == null)
{
DestroyVolumetricHistoryBuffers(hdCamera);
CreateVolumetricHistoryBuffers(hdCamera, hdCamera.vBufferParams.Length); // Basically, assume it's 2
}
// We only resize the feedback buffer (#0), not the history buffer (#1).
// We must NOT resize the buffer from the previous frame (#1), as that would invalidate its contents.
ResizeVolumetricBuffer(ref hdCamera.volumetricHistoryBuffers[currIdx], volumetricHistoryBufferNames[currIdx], currentParams.viewportSize.x,
currentParams.viewportSize.y,
currentParams.viewportSize.z);
}
internal void CreateVolumetricLightingBuffers()
{
Debug.Assert(m_VolumetricLightingCS != null);
Debug.Assert(m_DensityBuffer == null);
Debug.Assert(m_LightingBuffer == null);
m_VisibleVolumeBounds = new List<OrientedBBox>();
m_VisibleVolumeData = new List<DensityVolumeEngineData>();
m_VisibleVolumeBoundsBuffer = new ComputeBuffer(k_MaxVisibleVolumeCount, Marshal.SizeOf(typeof(OrientedBBox)));
m_VisibleVolumeDataBuffer = new ComputeBuffer(k_MaxVisibleVolumeCount, Marshal.SizeOf(typeof(DensityVolumeEngineData)));
// Allocate the smallest possible 3D texture.
// We will perform rescaling manually, in a custom manner, based on volume parameters.
const int minSize = 4;
m_DensityBuffer = RTHandles.Alloc(minSize, minSize, minSize, colorFormat: GraphicsFormat.R16G16B16A16_SFloat, // 8888_sRGB is not precise enough
dimension: TextureDimension.Tex3D, enableRandomWrite: true, name: "VBufferDensity");
m_LightingBuffer = RTHandles.Alloc(minSize, minSize, minSize, colorFormat: GraphicsFormat.R16G16B16A16_SFloat, // 8888_sRGB is not precise enough
dimension: TextureDimension.Tex3D, enableRandomWrite: true, name: "VBufferLighting");
m_MaxZMask8x = RTHandles.Alloc(Vector2.one * 0.125f, TextureXR.slices, dimension: TextureXR.dimension, colorFormat: GraphicsFormat.R32_SFloat,
enableRandomWrite: true, name: "MaxZ mask 8x");
m_MaxZMask = RTHandles.Alloc(Vector2.one / 16.0f, TextureXR.slices, dimension: TextureXR.dimension, colorFormat: GraphicsFormat.R32_SFloat,
enableRandomWrite: true, name: "MaxZ mask");
m_DilatedMaxZMask = RTHandles.Alloc(Vector2.one / 16.0f, TextureXR.slices, dimension: TextureXR.dimension, colorFormat: GraphicsFormat.R32_SFloat,
enableRandomWrite: true, name: "Dilated MaxZ mask");
}
internal void DestroyVolumetricLightingBuffers()
{
RTHandles.Release(m_LightingBuffer);
RTHandles.Release(m_DensityBuffer);
RTHandles.Release(m_MaxZMask8x);
RTHandles.Release(m_MaxZMask);
RTHandles.Release(m_DilatedMaxZMask);
CoreUtils.SafeRelease(m_VisibleVolumeDataBuffer);
CoreUtils.SafeRelease(m_VisibleVolumeBoundsBuffer);
m_VisibleVolumeData = null; // free()
m_VisibleVolumeBounds = null; // free()
}
// Must be called AFTER UpdateVolumetricBufferParams.
internal void ResizeVolumetricLightingBuffers(HDCamera hdCamera)
{
if (!Fog.IsVolumetricFogEnabled(hdCamera))
return;
Debug.Assert(hdCamera.vBufferParams != null);
// Render texture contents can become "lost" on certain events, like loading a new level,
// system going to a screensaver mode, in and out of fullscreen and so on.
// https://docs.unity3d.com/ScriptReference/RenderTexture.html
if (m_DensityBuffer == null || m_LightingBuffer == null)
{
DestroyVolumetricLightingBuffers();
CreateVolumetricLightingBuffers();
}
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
var currentParams = hdCamera.vBufferParams[currIdx];
ResizeVolumetricBuffer(ref m_DensityBuffer, "VBufferDensity", currentParams.viewportSize.x,
currentParams.viewportSize.y,
currentParams.viewportSize.z);
ResizeVolumetricBuffer(ref m_LightingBuffer, "VBufferLighting", currentParams.viewportSize.x,
currentParams.viewportSize.y,
currentParams.viewportSize.z);
// TODO RENDERGRAPH: For now those texture are not handled by render graph.
// When they are we won't have the m_DensityBuffer handy for getting the current size in UpdateShaderVariablesGlobalVolumetrics
// So we store the size here and in time we'll fill this vector differently.
m_CurrentVolumetricBufferSize = new Vector3Int(m_DensityBuffer.rt.width, m_DensityBuffer.rt.height, m_DensityBuffer.rt.volumeDepth);
}
void InitializeVolumetricLighting()
{
m_SupportVolumetrics = asset.currentPlatformRenderPipelineSettings.supportVolumetrics;
if (!m_SupportVolumetrics)
return;
m_VolumeVoxelizationCS = defaultResources.shaders.volumeVoxelizationCS;
m_VolumetricLightingCS = defaultResources.shaders.volumetricLightingCS;
m_VolumetricLightingFilteringCS = defaultResources.shaders.volumetricLightingFilteringCS;
m_PackedCoeffs = new Vector4[7];
m_PhaseZH = new ZonalHarmonicsL2();
m_PhaseZH.coeffs = new float[3];
m_xySeq = new Vector2[7];
m_PixelCoordToViewDirWS = new Matrix4x4[ShaderConfig.s_XrMaxViews];
CreateVolumetricLightingBuffers();
}
void CleanupVolumetricLighting()
{
// Note: No need to test for support volumetric here, we do saferelease and null assignation
DestroyVolumetricLightingBuffers();
m_VolumeVoxelizationCS = null;
m_VolumetricLightingCS = null;
m_VolumetricLightingFilteringCS = null;
}
static float CornetteShanksPhasePartConstant(float anisotropy)
{
float g = anisotropy;
return (3.0f / (8.0f * Mathf.PI)) * (1.0f - g * g) / (2.0f + g * g);
}
void UpdateShaderVariablesGlobalVolumetrics(ref ShaderVariablesGlobal cb, HDCamera hdCamera)
{
if (!Fog.IsVolumetricFogEnabled(hdCamera))
{
return;
}
// Get the interpolated anisotropy value.
var fog = hdCamera.volumeStack.GetComponent<Fog>();
uint frameIndex = hdCamera.GetCameraFrameCount();
uint currIdx = (frameIndex + 0) & 1;
var currParams = hdCamera.vBufferParams[currIdx];
// The lighting & density buffers are shared by all cameras.
// The history & feedback buffers are specific to the camera.
// These 2 types of buffers can have different sizes.
// Additionally, history buffers can have different sizes, since they are not resized at the same time.
var cvp = currParams.viewportSize;
// Adjust slices for XR rendering: VBuffer is shared for all single-pass views
uint sliceCount = (uint)(cvp.z / hdCamera.viewCount);
cb._VBufferViewportSize = new Vector4(cvp.x, cvp.y, 1.0f / cvp.x, 1.0f / cvp.y);
cb._VBufferSliceCount = sliceCount;
cb._VBufferRcpSliceCount = 1.0f / sliceCount;
cb._VBufferLightingViewportScale = currParams.ComputeViewportScale(m_CurrentVolumetricBufferSize);
cb._VBufferLightingViewportLimit = currParams.ComputeViewportLimit(m_CurrentVolumetricBufferSize);
cb._VBufferDistanceEncodingParams = currParams.depthEncodingParams;
cb._VBufferDistanceDecodingParams = currParams.depthDecodingParams;
cb._VBufferLastSliceDist = currParams.ComputeLastSliceDistance(sliceCount);
cb._VBufferRcpInstancedViewCount = 1.0f / hdCamera.viewCount;
}
DensityVolumeList PrepareVisibleDensityVolumeList(HDCamera hdCamera, CommandBuffer cmd)
{
DensityVolumeList densityVolumes = new DensityVolumeList();
if (!Fog.IsVolumetricFogEnabled(hdCamera))
return densityVolumes;
using (new ProfilingScope(cmd, ProfilingSampler.Get(HDProfileId.PrepareVisibleDensityVolumeList)))
{
Vector3 camPosition = hdCamera.camera.transform.position;
Vector3 camOffset = Vector3.zero;// World-origin-relative
if (ShaderConfig.s_CameraRelativeRendering != 0)
{
camOffset = camPosition; // Camera-relative
}
m_VisibleVolumeBounds.Clear();
m_VisibleVolumeData.Clear();
// Collect all visible finite volume data, and upload it to the GPU.
var volumes = DensityVolumeManager.manager.PrepareDensityVolumeData(cmd, hdCamera);
for (int i = 0; i < Math.Min(volumes.Count, k_MaxVisibleVolumeCount); i++)
{
DensityVolume volume = volumes[i];
// TODO: cache these?
var obb = new OrientedBBox(Matrix4x4.TRS(volume.transform.position, volume.transform.rotation, volume.parameters.size));
// Handle camera-relative rendering.
obb.center -= camOffset;
// Frustum cull on the CPU for now. TODO: do it on the GPU.
// TODO: account for custom near and far planes of the V-Buffer's frustum.
// It's typically much shorter (along the Z axis) than the camera's frustum.
if (GeometryUtils.Overlap(obb, hdCamera.frustum, 6, 8))
{
// TODO: cache these?
var data = volume.parameters.ConvertToEngineData();
m_VisibleVolumeBounds.Add(obb);
m_VisibleVolumeData.Add(data);
}
}
m_VisibleVolumeBoundsBuffer.SetData(m_VisibleVolumeBounds);
m_VisibleVolumeDataBuffer.SetData(m_VisibleVolumeData);
// Fill the struct with pointers in order to share the data with the light loop.
densityVolumes.bounds = m_VisibleVolumeBounds;
densityVolumes.density = m_VisibleVolumeData;
return densityVolumes;
}
}
struct VolumeVoxelizationParameters
{
public ComputeShader voxelizationCS;
public int voxelizationKernel;
public Vector4 resolution;
public int viewCount;
public bool tiledLighting;
public Texture3D volumeAtlas;
public ShaderVariablesVolumetric volumetricCB;
public ShaderVariablesLightList lightListCB;
}
unsafe void SetPreconvolvedAmbientLightProbe(ref ShaderVariablesVolumetric cb, HDCamera hdCamera, Fog fog)
{
SphericalHarmonicsL2 probeSH = SphericalHarmonicMath.UndoCosineRescaling(m_SkyManager.GetAmbientProbe(hdCamera));
probeSH = SphericalHarmonicMath.RescaleCoefficients(probeSH, fog.globalLightProbeDimmer.value);
ZonalHarmonicsL2.GetCornetteShanksPhaseFunction(m_PhaseZH, fog.anisotropy.value);
SphericalHarmonicsL2 finalSH = SphericalHarmonicMath.PremultiplyCoefficients(SphericalHarmonicMath.Convolve(probeSH, m_PhaseZH));
SphericalHarmonicMath.PackCoefficients(m_PackedCoeffs, finalSH);
for (int i = 0; i < 7; i++)
for (int j = 0; j < 4; ++j)
cb._AmbientProbeCoeffs[i * 4 + j] = m_PackedCoeffs[i][j];
}
unsafe void UpdateShaderVariableslVolumetrics(ref ShaderVariablesVolumetric cb, HDCamera hdCamera, in Vector4 resolution)
{
var fog = hdCamera.volumeStack.GetComponent<Fog>();
var vFoV = hdCamera.camera.GetGateFittedFieldOfView() * Mathf.Deg2Rad;
var gpuAspect = HDUtils.ProjectionMatrixAspect(hdCamera.mainViewConstants.projMatrix);
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
// Compose the matrix which allows us to compute the world space view direction.
hdCamera.GetPixelCoordToViewDirWS(resolution, gpuAspect, ref m_PixelCoordToViewDirWS);
for (int i = 0; i < m_PixelCoordToViewDirWS.Length; ++i)
for (int j = 0; j < 16; ++j)
cb._VBufferCoordToViewDirWS[i * 16 + j] = m_PixelCoordToViewDirWS[i][j];
cb._VBufferUnitDepthTexelSpacing = HDUtils.ComputZPlaneTexelSpacing(1.0f, vFoV, resolution.y);
cb._NumVisibleDensityVolumes = (uint)m_VisibleVolumeBounds.Count;
cb._CornetteShanksConstant = CornetteShanksPhasePartConstant(fog.anisotropy.value);
cb._VBufferHistoryIsValid = hdCamera.volumetricHistoryIsValid ? 1u : 0u;
GetHexagonalClosePackedSpheres7(m_xySeq);
int sampleIndex = frameIndex % 7;
Vector4 xySeqOffset = new Vector4();
// TODO: should we somehow reorder offsets in Z based on the offset in XY? S.t. the samples more evenly cover the domain.
// Currently, we assume that they are completely uncorrelated, but maybe we should correlate them somehow.
xySeqOffset.Set(m_xySeq[sampleIndex].x, m_xySeq[sampleIndex].y, m_zSeq[sampleIndex], frameIndex);
cb._VBufferSampleOffset = xySeqOffset;
var volumeAtlas = DensityVolumeManager.manager.volumeAtlas.GetAtlas();
cb._VolumeMaskDimensions = Vector4.zero;
if (DensityVolumeManager.manager.volumeAtlas.GetAtlas() != null)
{
cb._VolumeMaskDimensions.x = (float)volumeAtlas.width / volumeAtlas.depth; // 1 / number of textures
cb._VolumeMaskDimensions.y = volumeAtlas.width;
cb._VolumeMaskDimensions.z = volumeAtlas.depth;
cb._VolumeMaskDimensions.w = Mathf.Log(volumeAtlas.width, 2); // Max LoD
}
SetPreconvolvedAmbientLightProbe(ref cb, hdCamera, fog);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
var currParams = hdCamera.vBufferParams[currIdx];
var prevParams = hdCamera.vBufferParams[prevIdx];
var pvp = prevParams.viewportSize;
// The lighting & density buffers are shared by all cameras.
// The history & feedback buffers are specific to the camera.
// These 2 types of buffers can have different sizes.
// Additionally, history buffers can have different sizes, since they are not resized at the same time.
Vector3Int historyBufferSize = Vector3Int.zero;
if (hdCamera.IsVolumetricReprojectionEnabled())
{
RTHandle historyRT = hdCamera.volumetricHistoryBuffers[prevIdx];
historyBufferSize = new Vector3Int(historyRT.rt.width, historyRT.rt.height, historyRT.rt.volumeDepth);
}
cb._VBufferVoxelSize = currParams.voxelSize;
cb._VBufferPrevViewportSize = new Vector4(pvp.x, pvp.y, 1.0f / pvp.x, 1.0f / pvp.y);
cb._VBufferHistoryViewportScale = prevParams.ComputeViewportScale(historyBufferSize);
cb._VBufferHistoryViewportLimit = prevParams.ComputeViewportLimit(historyBufferSize);
cb._VBufferPrevDistanceEncodingParams = prevParams.depthEncodingParams;
cb._VBufferPrevDistanceDecodingParams = prevParams.depthDecodingParams;
cb._NumTileBigTileX = (uint)GetNumTileBigTileX(hdCamera);
cb._NumTileBigTileY = (uint)GetNumTileBigTileY(hdCamera);
}
VolumeVoxelizationParameters PrepareVolumeVoxelizationParameters(HDCamera hdCamera)
{
var parameters = new VolumeVoxelizationParameters();
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
var currParams = hdCamera.vBufferParams[currIdx];
parameters.viewCount = hdCamera.viewCount;
parameters.tiledLighting = HasLightToCull() && hdCamera.frameSettings.IsEnabled(FrameSettingsField.BigTilePrepass);
bool optimal = currParams.voxelSize == 8;
parameters.voxelizationCS = m_VolumeVoxelizationCS;
parameters.voxelizationKernel = (parameters.tiledLighting ? 1 : 0) | (!optimal ? 2 : 0);
var cvp = currParams.viewportSize;
parameters.resolution = new Vector4(cvp.x, cvp.y, 1.0f / cvp.x, 1.0f / cvp.y);
parameters.volumeAtlas = DensityVolumeManager.manager.volumeAtlas.GetAtlas();
if (parameters.volumeAtlas == null)
{
parameters.volumeAtlas = CoreUtils.blackVolumeTexture;
}
UpdateShaderVariableslVolumetrics(ref m_ShaderVariablesVolumetricCB, hdCamera, parameters.resolution);
parameters.volumetricCB = m_ShaderVariablesVolumetricCB;
parameters.lightListCB = m_ShaderVariablesLightListCB;
return parameters;
}
static void VolumeVoxelizationPass(in VolumeVoxelizationParameters parameters,
RTHandle densityBuffer,
ComputeBuffer visibleVolumeBoundsBuffer,
ComputeBuffer visibleVolumeDataBuffer,
ComputeBuffer bigTileLightList,
CommandBuffer cmd)
{
if (parameters.tiledLighting)
cmd.SetComputeBufferParam(parameters.voxelizationCS, parameters.voxelizationKernel, HDShaderIDs.g_vBigTileLightList, bigTileLightList);
cmd.SetComputeTextureParam(parameters.voxelizationCS, parameters.voxelizationKernel, HDShaderIDs._VBufferDensity, densityBuffer);
cmd.SetComputeBufferParam(parameters.voxelizationCS, parameters.voxelizationKernel, HDShaderIDs._VolumeBounds, visibleVolumeBoundsBuffer);
cmd.SetComputeBufferParam(parameters.voxelizationCS, parameters.voxelizationKernel, HDShaderIDs._VolumeData, visibleVolumeDataBuffer);
cmd.SetComputeTextureParam(parameters.voxelizationCS, parameters.voxelizationKernel, HDShaderIDs._VolumeMaskAtlas, parameters.volumeAtlas);
ConstantBuffer.Push(cmd, parameters.volumetricCB, parameters.voxelizationCS, HDShaderIDs._ShaderVariablesVolumetric);
ConstantBuffer.Set<ShaderVariablesLightList>(cmd, parameters.voxelizationCS, HDShaderIDs._ShaderVariablesLightList);
// The shader defines GROUP_SIZE_1D = 8.
cmd.DispatchCompute(parameters.voxelizationCS, parameters.voxelizationKernel, ((int)parameters.resolution.x + 7) / 8, ((int)parameters.resolution.y + 7) / 8, parameters.viewCount);
}
// Ref: https://en.wikipedia.org/wiki/Close-packing_of_equal_spheres
// The returned {x, y} coordinates (and all spheres) are all within the (-0.5, 0.5)^2 range.
// The pattern has been rotated by 15 degrees to maximize the resolution along X and Y:
// https://www.desmos.com/calculator/kcpfvltz7c
static void GetHexagonalClosePackedSpheres7(Vector2[] coords)
{
float r = 0.17054068870105443882f;
float d = 2 * r;
float s = r * Mathf.Sqrt(3);
// Try to keep the weighted average as close to the center (0.5) as possible.
// (7)(5) ( )( ) ( )( ) ( )( ) ( )( ) ( )(o) ( )(x) (o)(x) (x)(x)
// (2)(1)(3) ( )(o)( ) (o)(x)( ) (x)(x)(o) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x)
// (4)(6) ( )( ) ( )( ) ( )( ) (o)( ) (x)( ) (x)(o) (x)(x) (x)(x)
coords[0] = new Vector2(0, 0);
coords[1] = new Vector2(-d, 0);
coords[2] = new Vector2(d, 0);
coords[3] = new Vector2(-r, -s);
coords[4] = new Vector2(r, s);
coords[5] = new Vector2(r, -s);
coords[6] = new Vector2(-r, s);
// Rotate the sampling pattern by 15 degrees.
const float cos15 = 0.96592582628906828675f;
const float sin15 = 0.25881904510252076235f;
for (int i = 0; i < 7; i++)
{
Vector2 coord = coords[i];
coords[i].x = coord.x * cos15 - coord.y * sin15;
coords[i].y = coord.x * sin15 + coord.y * cos15;
}
}
struct VolumetricLightingParameters
{
public ComputeShader volumetricLightingCS;
public ComputeShader volumetricLightingFilteringCS;
public int volumetricLightingKernel;
public int volumetricFilteringKernel;
public bool tiledLighting;
public Vector4 resolution;
public bool enableReprojection;
public int viewCount;
public int sliceCount;
public bool filterVolume;
public ShaderVariablesVolumetric volumetricCB;
public ShaderVariablesLightList lightListCB;
}
VolumetricLightingParameters PrepareVolumetricLightingParameters(HDCamera hdCamera)
{
var parameters = new VolumetricLightingParameters();
int frameIndex = (int)VolumetricFrameIndex(hdCamera);
var currIdx = (frameIndex + 0) & 1;
var prevIdx = (frameIndex + 1) & 1;
var currParams = hdCamera.vBufferParams[currIdx];
// Get the interpolated anisotropy value.
var fog = hdCamera.volumeStack.GetComponent<Fog>();
// Only available in the Play Mode because all the frame counters in the Edit Mode are broken.
parameters.tiledLighting = hdCamera.frameSettings.IsEnabled(FrameSettingsField.BigTilePrepass);
bool volumeAllowsReprojection = ((int)fog.denoisingMode.value & (int)FogDenoisingMode.Reprojection) != 0;
parameters.enableReprojection = hdCamera.IsVolumetricReprojectionEnabled() && volumeAllowsReprojection;
bool enableAnisotropy = fog.anisotropy.value != 0;
// The multi-pass integration is only possible if re-projection is possible and the effect is not in anisotropic mode.
bool optimal = currParams.voxelSize == 8;
parameters.volumetricLightingCS = m_VolumetricLightingCS;
parameters.volumetricLightingFilteringCS = m_VolumetricLightingFilteringCS;
parameters.volumetricLightingCS.shaderKeywords = null;
CoreUtils.SetKeyword(parameters.volumetricLightingCS, "LIGHTLOOP_DISABLE_TILE_AND_CLUSTER", !parameters.tiledLighting);
CoreUtils.SetKeyword(parameters.volumetricLightingCS, "ENABLE_REPROJECTION", parameters.enableReprojection);
CoreUtils.SetKeyword(parameters.volumetricLightingCS, "ENABLE_ANISOTROPY", enableAnisotropy);
CoreUtils.SetKeyword(parameters.volumetricLightingCS, "VL_PRESET_OPTIMAL", optimal);
CoreUtils.SetKeyword(parameters.volumetricLightingCS, "SUPPORT_LOCAL_LIGHTS", !fog.directionalLightsOnly.value);
parameters.volumetricLightingKernel = parameters.volumetricLightingCS.FindKernel("VolumetricLighting");
parameters.volumetricFilteringKernel = parameters.volumetricLightingFilteringCS.FindKernel("FilterVolumetricLighting");
var cvp = currParams.viewportSize;
parameters.resolution = new Vector4(cvp.x, cvp.y, 1.0f / cvp.x, 1.0f / cvp.y);
parameters.viewCount = hdCamera.viewCount;
parameters.filterVolume = ((int)fog.denoisingMode.value & (int)FogDenoisingMode.Gaussian) != 0;
parameters.sliceCount = (int)(cvp.z);
UpdateShaderVariableslVolumetrics(ref m_ShaderVariablesVolumetricCB, hdCamera, parameters.resolution);
parameters.volumetricCB = m_ShaderVariablesVolumetricCB;
parameters.lightListCB = m_ShaderVariablesLightListCB;
return parameters;
}
static void VolumetricLightingPass(in VolumetricLightingParameters parameters,
RTHandle depthTexture,
RTHandle densityBuffer,
RTHandle lightingBuffer,
RTHandle maxZTexture,
RTHandle historyRT,
RTHandle feedbackRT,
ComputeBuffer bigTileLightList,
CommandBuffer cmd)
{
if (parameters.tiledLighting)
cmd.SetComputeBufferParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs.g_vBigTileLightList, bigTileLightList);
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._MaxZMaskTexture, maxZTexture); // Read
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._CameraDepthTexture, depthTexture); // Read
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._VBufferDensity, densityBuffer); // Read
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._VBufferLighting, lightingBuffer); // Write
if (parameters.enableReprojection)
{
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._VBufferHistory, historyRT); // Read
cmd.SetComputeTextureParam(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, HDShaderIDs._VBufferFeedback, feedbackRT); // Write
}
ConstantBuffer.Push(cmd, parameters.volumetricCB, parameters.volumetricLightingCS, HDShaderIDs._ShaderVariablesVolumetric);
ConstantBuffer.Set<ShaderVariablesLightList>(cmd, parameters.volumetricLightingCS, HDShaderIDs._ShaderVariablesLightList);
// The shader defines GROUP_SIZE_1D = 8.
cmd.DispatchCompute(parameters.volumetricLightingCS, parameters.volumetricLightingKernel, ((int)parameters.resolution.x + 7) / 8, ((int)parameters.resolution.y + 7) / 8, parameters.viewCount);
}
static void FilterVolumetricLighting(in VolumetricLightingParameters parameters, RTHandle lightingBuffer, CommandBuffer cmd)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(HDProfileId.VolumetricLightingFiltering)))
{
ConstantBuffer.Push(cmd, parameters.volumetricCB, parameters.volumetricLightingFilteringCS, HDShaderIDs._ShaderVariablesVolumetric);
// The shader defines GROUP_SIZE_1D_XY = 8 and GROUP_SIZE_1D_Z = 1
cmd.SetComputeTextureParam(parameters.volumetricLightingFilteringCS, parameters.volumetricFilteringKernel, HDShaderIDs._VBufferLighting, lightingBuffer);
cmd.DispatchCompute(parameters.volumetricLightingFilteringCS, parameters.volumetricFilteringKernel, HDUtils.DivRoundUp((int)parameters.resolution.x, 8),
HDUtils.DivRoundUp((int)parameters.resolution.y, 8),
parameters.sliceCount);
}
}
} // class VolumetricLightingModule
} // namespace UnityEngine.Rendering.HighDefinition