179 lines
7.6 KiB
HLSL
179 lines
7.6 KiB
HLSL
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/RenderPipeline/Raytracing/Shaders/RaytracingFragInputs.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/RenderPipeline/Raytracing/Shaders/RaytracingSampling.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/RenderPipeline/Raytracing/Shaders/Common/AtmosphericScatteringRayTracing.hlsl"
|
|
|
|
// Generic function that handles the reflection code
|
|
[shader("closesthit")]
|
|
void ClosestHitMain(inout RayIntersection rayIntersection : SV_RayPayload, AttributeData attributeData : SV_IntersectionAttributes)
|
|
{
|
|
UNITY_XR_ASSIGN_VIEW_INDEX(DispatchRaysIndex().z);
|
|
|
|
// The first thing that we should do is grab the intersection vertice
|
|
IntersectionVertex currentVertex;
|
|
GetCurrentIntersectionVertex(attributeData, currentVertex);
|
|
|
|
// Build the Frag inputs from the intersection vertice
|
|
FragInputs fragInput;
|
|
BuildFragInputsFromIntersection(currentVertex, rayIntersection.incidentDirection, fragInput);
|
|
|
|
// Compute the view vector
|
|
float3 viewWS = -rayIntersection.incidentDirection;
|
|
float3 pointWSPos = fragInput.positionRWS;
|
|
|
|
// Make sure to add the additional travel distance
|
|
float travelDistance = length(fragInput.positionRWS - rayIntersection.origin);
|
|
rayIntersection.t = travelDistance;
|
|
rayIntersection.cone.width += travelDistance * rayIntersection.cone.spreadAngle;
|
|
|
|
PositionInputs posInput = GetPositionInput(rayIntersection.pixelCoord, _ScreenSize.zw, fragInput.positionRWS);
|
|
|
|
// Build the surfacedata and builtindata
|
|
SurfaceData surfaceData;
|
|
BuiltinData builtinData;
|
|
bool isVisible;
|
|
GetSurfaceAndBuiltinData(fragInput, viewWS, posInput, surfaceData, builtinData, currentVertex, rayIntersection.cone, isVisible);
|
|
|
|
// Compute the bsdf data
|
|
BSDFData bsdfData = ConvertSurfaceDataToBSDFData(posInput.positionSS, surfaceData);
|
|
|
|
// No need for SurfaceData after this line
|
|
|
|
#ifdef HAS_LIGHTLOOP
|
|
// We do not want to use the diffuse when we compute the indirect diffuse
|
|
if (_RayTracingDiffuseLightingOnly)
|
|
{
|
|
builtinData.bakeDiffuseLighting = float3(0.0, 0.0, 0.0);
|
|
builtinData.backBakeDiffuseLighting = float3(0.0, 0.0, 0.0);
|
|
}
|
|
|
|
// Compute the prelight data
|
|
PreLightData preLightData = GetPreLightData(viewWS, posInput, bsdfData);
|
|
float3 reflected = float3(0.0, 0.0, 0.0);
|
|
float reflectedWeight = 0.0;
|
|
|
|
#ifdef MULTI_BOUNCE_INDIRECT
|
|
// We only launch a ray if there is still some depth be used
|
|
if (rayIntersection.remainingDepth < _RaytracingMaxRecursion)
|
|
{
|
|
// Generate the new sample (follwing values of the sequence)
|
|
float2 theSample = float2(0.0, 0.0);
|
|
theSample.x = GetBNDSequenceSample(rayIntersection.pixelCoord, rayIntersection.sampleIndex, rayIntersection.remainingDepth * 2);
|
|
theSample.y = GetBNDSequenceSample(rayIntersection.pixelCoord, rayIntersection.sampleIndex, rayIntersection.remainingDepth * 2 + 1);
|
|
|
|
float3 sampleDir;
|
|
if (_RayTracingDiffuseLightingOnly)
|
|
{
|
|
sampleDir = SampleHemisphereCosine(theSample.x, theSample.y, bsdfData.normalWS);
|
|
}
|
|
else
|
|
{
|
|
sampleDir = SampleSpecularBRDF(bsdfData, theSample, viewWS);
|
|
}
|
|
|
|
// Create the ray descriptor for this pixel
|
|
RayDesc rayDescriptor;
|
|
rayDescriptor.Origin = pointWSPos + bsdfData.normalWS * _RaytracingRayBias;
|
|
rayDescriptor.Direction = sampleDir;
|
|
rayDescriptor.TMin = 0.0f;
|
|
rayDescriptor.TMax = _RaytracingRayMaxLength;
|
|
|
|
// Create and init the RayIntersection structure for this
|
|
RayIntersection reflectedIntersection;
|
|
reflectedIntersection.color = float3(0.0, 0.0, 0.0);
|
|
reflectedIntersection.incidentDirection = rayDescriptor.Direction;
|
|
reflectedIntersection.origin = rayDescriptor.Origin;
|
|
reflectedIntersection.t = -1.0f;
|
|
reflectedIntersection.remainingDepth = rayIntersection.remainingDepth + 1;
|
|
reflectedIntersection.pixelCoord = rayIntersection.pixelCoord;
|
|
reflectedIntersection.sampleIndex = rayIntersection.sampleIndex;
|
|
|
|
// In order to achieve filtering for the textures, we need to compute the spread angle of the pixel
|
|
reflectedIntersection.cone.spreadAngle = rayIntersection.cone.spreadAngle;
|
|
reflectedIntersection.cone.width = rayIntersection.cone.width;
|
|
|
|
bool launchRay = true;
|
|
if (!_RayTracingDiffuseLightingOnly)
|
|
launchRay = dot(sampleDir, bsdfData.normalWS) > 0.0;
|
|
|
|
// Evaluate the ray intersection
|
|
if (launchRay)
|
|
TraceRay(_RaytracingAccelerationStructure
|
|
, RAY_FLAG_CULL_BACK_FACING_TRIANGLES
|
|
, _RayTracingDiffuseLightingOnly ? RAYTRACINGRENDERERFLAG_GLOBAL_ILLUMINATION : RAYTRACINGRENDERERFLAG_REFLECTION
|
|
, 0, 1, 0, rayDescriptor, reflectedIntersection);
|
|
|
|
// Contribute to the pixel
|
|
if (_RayTracingDiffuseLightingOnly)
|
|
builtinData.bakeDiffuseLighting = reflectedIntersection.color;
|
|
else
|
|
{
|
|
// Override the reflected color
|
|
reflected = reflectedIntersection.color;
|
|
reflectedWeight = 1.0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Run the lightloop
|
|
LightLoopOutput lightLoopOutput;
|
|
LightLoop(viewWS, posInput, preLightData, bsdfData, builtinData, reflectedWeight, 0.0, reflected, float3(0.0, 0.0, 0.0), lightLoopOutput);
|
|
|
|
// Alias
|
|
float3 diffuseLighting = lightLoopOutput.diffuseLighting;
|
|
float3 specularLighting = lightLoopOutput.specularLighting;
|
|
|
|
// Color display for the moment
|
|
rayIntersection.color = diffuseLighting + specularLighting;
|
|
#else
|
|
// Given that we will be multiplying the final color by the current exposure multiplier outside of this function, we need to make sure that
|
|
// the unlit color is not impacted by that. Thus, we multiply it by the inverse of the current exposure multiplier.
|
|
rayIntersection.color = bsdfData.color * GetInverseCurrentExposureMultiplier() + builtinData.emissiveColor;
|
|
#endif
|
|
|
|
// Apply fog attenuation
|
|
ApplyFogAttenuation(WorldRayOrigin(), WorldRayDirection(), rayIntersection.t, rayIntersection.color, true);
|
|
}
|
|
|
|
// Generic function that handles the reflection code
|
|
[shader("anyhit")]
|
|
void AnyHitMain(inout RayIntersection rayIntersection : SV_RayPayload, AttributeData attributeData : SV_IntersectionAttributes)
|
|
{
|
|
#ifdef _SURFACE_TYPE_TRANSPARENT
|
|
IgnoreHit();
|
|
#else
|
|
|
|
UNITY_XR_ASSIGN_VIEW_INDEX(DispatchRaysIndex().z);
|
|
|
|
// The first thing that we should do is grab the intersection vertice
|
|
IntersectionVertex currentVertex;
|
|
GetCurrentIntersectionVertex(attributeData, currentVertex);
|
|
|
|
// Build the Frag inputs from the intersection vertice
|
|
FragInputs fragInput;
|
|
BuildFragInputsFromIntersection(currentVertex, rayIntersection.incidentDirection, fragInput);
|
|
|
|
// Compute the view vector
|
|
float3 viewWS = -rayIntersection.incidentDirection;
|
|
|
|
// Compute the distance of the ray
|
|
float travelDistance = length(fragInput.positionRWS - rayIntersection.origin);
|
|
rayIntersection.t = travelDistance;
|
|
|
|
PositionInputs posInput;
|
|
posInput.positionWS = fragInput.positionRWS;
|
|
posInput.positionSS = rayIntersection.pixelCoord;
|
|
|
|
// Build the surfacedata and builtindata
|
|
SurfaceData surfaceData;
|
|
BuiltinData builtinData;
|
|
bool isVisible;
|
|
GetSurfaceAndBuiltinData(fragInput, viewWS, posInput, surfaceData, builtinData, currentVertex, rayIntersection.cone, isVisible);
|
|
|
|
// If this fella should be culled, then we cull it
|
|
if(!isVisible)
|
|
{
|
|
IgnoreHit();
|
|
}
|
|
#endif
|
|
}
|