2021-09-09 20:42:29 -04:00

240 lines
10 KiB
HLSL

#ifndef UNITY_HD_SHADOW_LOOP_HLSL
#define UNITY_HD_SHADOW_LOOP_HLSL
//#define SHADOW_LOOP_MULTIPLY
//#define SHADOW_LOOP_AVERAGE
#if defined(SHADOW_LOOP_MULTIPLY) || defined(SHADOW_LOOP_AVERAGE)
#define SHADOW_LOOP_WEIGHT
#endif
void ShadowLoopMin(HDShadowContext shadowContext, PositionInputs posInput, float3 normalWS, uint featureFlags, uint renderLayer,
out float3 shadow)
{
#ifdef SHADOW_LOOP_WEIGHT
float shadowCount = 0.0f;
#endif
#ifdef SHADOW_LOOP_MULTIPLY
shadow = float3(1, 1, 1);
#elif defined(SHADOW_LOOP_AVERAGE)
shadow = float3(0, 0, 0);
#else
shadow = float3(1, 1, 1);
#endif
// With XR single-pass and camera-relative: offset position to do lighting computations from the combined center view (original camera matrix).
// This is required because there is only one list of lights generated on the CPU. Shadows are also generated once and shared between the instanced views.
ApplyCameraRelativeXR(posInput.positionWS);
// Initialize the contactShadow and contactShadowFade fields
// First of all we compute the shadow value of the directional light to reduce the VGPR pressure
if (featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL)
{
// Evaluate sun shadows.
if (_DirectionalShadowIndex >= 0)
{
DirectionalLightData light = _DirectionalLightDatas[_DirectionalShadowIndex];
// TODO: this will cause us to load from the normal buffer first. Does this cause a performance problem?
float3 wi = -light.forward;
// Is it worth sampling the shadow map?
if (light.lightDimmer > 0 && light.shadowDimmer > 0)
{
float shadowD = GetDirectionalShadowAttenuation(shadowContext,
posInput.positionSS, posInput.positionWS, normalWS,
light.shadowIndex, wi);
#ifdef SHADOW_LOOP_MULTIPLY
shadow *= lerp(light.shadowTint, float3(1, 1, 1), shadowD);
#elif defined(SHADOW_LOOP_AVERAGE)
shadow += lerp(light.shadowTint, float3(1, 1, 1), shadowD);
#else
shadow = min(shadow, shadowD.xxx);
#endif
#ifdef SHADOW_LOOP_WEIGHT
shadowCount += 1.0f;
#endif
}
}
}
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL)
{
uint lightCount, lightStart;
#ifndef LIGHTLOOP_DISABLE_TILE_AND_CLUSTER
GetCountAndStart(posInput, LIGHTCATEGORY_PUNCTUAL, lightStart, lightCount);
#else // LIGHTLOOP_DISABLE_TILE_AND_CLUSTER
lightCount = _PunctualLightCount;
lightStart = 0;
#endif
bool fastPath = false;
uint lightStartLane0;
fastPath = IsFastPath(lightStart, lightStartLane0);
if (fastPath)
{
lightStart = lightStartLane0;
}
// Scalarized loop. All lights that are in a tile/cluster touched by any pixel in the wave are loaded (scalar load), only the one relevant to current thread/pixel are processed.
// For clarity, the following code will follow the convention: variables starting with s_ are meant to be wave uniform (meant for scalar register),
// v_ are variables that might have different value for each thread in the wave (meant for vector registers).
// This will perform more loads than it is supposed to, however, the benefits should offset the downside, especially given that light data accessed should be largely coherent.
// Note that the above is valid only if wave intriniscs are supported.
uint v_lightListOffset = 0;
uint v_lightIdx = lightStart;
while (v_lightListOffset < lightCount)
{
v_lightIdx = FetchIndex(lightStart, v_lightListOffset);
uint s_lightIdx = ScalarizeElementIndex(v_lightIdx, fastPath);
if (s_lightIdx == -1)
break;
LightData s_lightData = FetchLight(s_lightIdx);
// If current scalar and vector light index match, we process the light. The v_lightListOffset for current thread is increased.
// Note that the following should really be ==, however, since helper lanes are not considered by WaveActiveMin, such helper lanes could
// end up with a unique v_lightIdx value that is smaller than s_lightIdx hence being stuck in a loop. All the active lanes will not have this problem.
if (s_lightIdx >= v_lightIdx)
{
v_lightListOffset++;
if (IsMatchingLightLayer(s_lightData.lightLayers, renderLayer) &&
s_lightData.shadowIndex >= 0 &&
s_lightData.shadowDimmer > 0)
{
float shadowP;
float3 L;
float4 distances; // {d, d^2, 1/d, d_proj}
GetPunctualLightVectors(posInput.positionWS, s_lightData, L, distances);
float lightRadSqr = s_lightData.size.x;
if (distances.x < s_lightData.range &&
PunctualLightAttenuation(distances, s_lightData.rangeAttenuationScale, s_lightData.rangeAttenuationBias,
s_lightData.angleScale, s_lightData.angleOffset) > 0.0 &&
L.y > 0.0)
{
shadowP = GetPunctualShadowAttenuation(shadowContext, posInput.positionSS, posInput.positionWS, normalWS, s_lightData.shadowIndex, L, distances.x, s_lightData.lightType == GPULIGHTTYPE_POINT, s_lightData.lightType != GPULIGHTTYPE_PROJECTOR_BOX);
shadowP = s_lightData.nonLightMappedOnly ? min(1.0f, shadowP) : shadowP;
shadowP = lerp(1.0f, shadowP, s_lightData.shadowDimmer);
#ifdef SHADOW_LOOP_MULTIPLY
shadow *= lerp(s_lightData.shadowTint, float3(1, 1, 1), shadowP);
#elif defined(SHADOW_LOOP_AVERAGE)
shadow += lerp(s_lightData.shadowTint, float3(1, 1, 1), shadowP);
#else
shadow = min(shadow, shadowP.xxx);
#endif
#ifdef SHADOW_LOOP_WEIGHT
shadowCount += 1.0f;
#endif
}
}
}
}
}
if (featureFlags & LIGHTFEATUREFLAGS_AREA)
{
uint lightCount, lightStart;
#ifndef LIGHTLOOP_DISABLE_TILE_AND_CLUSTER
GetCountAndStart(posInput, LIGHTCATEGORY_AREA, lightStart, lightCount);
#else
lightCount = _AreaLightCount;
lightStart = _PunctualLightCount;
#endif
// COMPILER BEHAVIOR WARNING!
// If rectangle lights are before line lights, the compiler will duplicate light matrices in VGPR because they are used differently between the two types of lights.
// By keeping line lights first we avoid this behavior and save substantial register pressure.
// TODO: This is based on the current Lit.shader and can be different for any other way of implementing area lights, how to be generic and ensure performance ?
uint i;
if (lightCount > 0)
{
i = 0;
uint last = lightCount - 1;
LightData lightData = FetchLight(lightStart, i);
while (i <= last && lightData.lightType == GPULIGHTTYPE_TUBE)
{
lightData = FetchLight(lightStart, min(++i, last));
}
while (i <= last) // GPULIGHTTYPE_RECTANGLE
{
lightData.lightType = GPULIGHTTYPE_RECTANGLE; // Enforce constant propagation
if (IsMatchingLightLayer(lightData.lightLayers, renderLayer))
{
float3 L;
float4 distances; // {d, d^2, 1/d, d_proj}
GetPunctualLightVectors(posInput.positionWS, lightData, L, distances);
float lightRadSqr = lightData.size.x;
float shadowP;
float coef = 0.0f;
float3 unL = lightData.positionRWS - posInput.positionWS;
if (dot(lightData.forward, unL) < FLT_EPS)
{
float3x3 lightToWorld = float3x3(lightData.right, lightData.up, -lightData.forward);
unL = mul(unL, transpose(lightToWorld));
float halfWidth = lightData.size.x*0.5;
float halfHeight = lightData.size.y*0.5;
float range = lightData.range;
float3 invHalfDim = rcp(float3(range + halfWidth,
range + halfHeight,
range));
coef = EllipsoidalDistanceAttenuation(unL, invHalfDim,
lightData.rangeAttenuationScale,
lightData.rangeAttenuationBias);
}
if (distances.x < lightData.range && coef > 0.0)
{
float shadowA = GetRectAreaShadowAttenuation(shadowContext, posInput.positionSS, posInput.positionWS, normalWS, lightData.shadowIndex, normalize(lightData.positionRWS), length(lightData.positionRWS));
#ifdef SHADOW_LOOP_MULTIPLY
shadow *= lerp(lightData.shadowTint, float3(1, 1, 1), shadowA);
#elif defined(SHADOW_LOOP_AVERAGE)
shadow += lerp(lightData.shadowTint, float3(1, 1, 1), shadowA);
#else
shadow = min(shadow, shadowA.xxx);
#endif
#ifdef SHADOW_LOOP_WEIGHT
shadowCount += 1.0f;
#endif
}
}
lightData = FetchLight(lightStart, min(++i, last));
}
}
}
#ifdef SHADOW_LOOP_MULTIPLY
if (shadowCount == 0.0f)
{
shadow = float3(1, 1, 1);
}
#elif defined(SHADOW_LOOP_AVERAGE)
if (shadowCount > 0.0f)
{
shadow /= shadowCount;
}
else
{
shadow = float3(1, 1, 1);
}
#endif
}
#endif