using System; namespace UnityEngine.Rendering.HighDefinition { struct ZonalHarmonicsL2 { public float[] coeffs; // Must have the size of 3 public static ZonalHarmonicsL2 GetHenyeyGreensteinPhaseFunction(float anisotropy) { float g = anisotropy; var zh = new ZonalHarmonicsL2(); zh.coeffs = new float[3]; zh.coeffs[0] = 0.5f * Mathf.Sqrt(1.0f / Mathf.PI); zh.coeffs[1] = 0.5f * Mathf.Sqrt(3.0f / Mathf.PI) * g; zh.coeffs[2] = 0.5f * Mathf.Sqrt(5.0f / Mathf.PI) * g * g; return zh; } public static void GetCornetteShanksPhaseFunction(ZonalHarmonicsL2 zh, float anisotropy) { float g = anisotropy; zh.coeffs[0] = 0.282095f; zh.coeffs[1] = 0.293162f * g * (4.0f + (g * g)) / (2.0f + (g * g)); zh.coeffs[2] = (0.126157f + 1.44179f * (g * g) + 0.324403f * (g * g) * (g * g)) / (2.0f + (g * g)); } } [Serializable] internal struct SphericalHarmonicsL1 { public Vector4 shAr; public Vector4 shAg; public Vector4 shAb; public static readonly SphericalHarmonicsL1 zero = new SphericalHarmonicsL1 { shAr = Vector4.zero, shAg = Vector4.zero, shAb = Vector4.zero }; // These operators are implemented so that SphericalHarmonicsL1 matches API of SphericalHarmonicsL2. public static SphericalHarmonicsL1 operator+(SphericalHarmonicsL1 lhs, SphericalHarmonicsL1 rhs) => new SphericalHarmonicsL1() { shAr = lhs.shAr + rhs.shAr, shAg = lhs.shAg + rhs.shAg, shAb = lhs.shAb + rhs.shAb }; public static SphericalHarmonicsL1 operator-(SphericalHarmonicsL1 lhs, SphericalHarmonicsL1 rhs) => new SphericalHarmonicsL1() { shAr = lhs.shAr - rhs.shAr, shAg = lhs.shAg - rhs.shAg, shAb = lhs.shAb - rhs.shAb }; public static SphericalHarmonicsL1 operator*(SphericalHarmonicsL1 lhs, float rhs) => new SphericalHarmonicsL1() { shAr = lhs.shAr * rhs, shAg = lhs.shAg * rhs, shAb = lhs.shAb * rhs }; public static SphericalHarmonicsL1 operator/(SphericalHarmonicsL1 lhs, float rhs) => new SphericalHarmonicsL1() { shAr = lhs.shAr / rhs, shAg = lhs.shAg / rhs, shAb = lhs.shAb / rhs }; public static bool operator==(SphericalHarmonicsL1 lhs, SphericalHarmonicsL1 rhs) { return lhs.shAr == rhs.shAr && lhs.shAg == rhs.shAg && lhs.shAb == rhs.shAb; } public static bool operator!=(SphericalHarmonicsL1 lhs, SphericalHarmonicsL1 rhs) { return !(lhs == rhs); } public override bool Equals(object other) { if (!(other is SphericalHarmonicsL1)) return false; return this == (SphericalHarmonicsL1)other; } public override int GetHashCode() { return ((17 * 23 + shAr.GetHashCode()) * 23 + shAg.GetHashCode()) * 23 + shAb.GetHashCode(); } } class SphericalHarmonicMath { // Ref: "Stupid Spherical Harmonics Tricks", p. 6. public static SphericalHarmonicsL2 Convolve(SphericalHarmonicsL2 sh, ZonalHarmonicsL2 zh) { for (int l = 0; l <= 2; l++) { float n = Mathf.Sqrt((4.0f * Mathf.PI) / (2 * l + 1)); float k = zh.coeffs[l]; float p = n * k; for (int m = -l; m <= l; m++) { int i = l * (l + 1) + m; for (int c = 0; c < 3; c++) { sh[c, i] *= p; } } } return sh; } const float c0 = 0.28209479177387814347f; // 1/2 * sqrt(1/Pi) const float c1 = 0.32573500793527994772f; // 1/3 * sqrt(3/Pi) const float c2 = 0.27313710764801976764f; // 1/8 * sqrt(15/Pi) const float c3 = 0.07884789131313000151f; // 1/16 * sqrt(5/Pi) const float c4 = 0.13656855382400988382f; // 1/16 * sqrt(15/Pi) // Compute the inverse of SphericalHarmonicsL2::kNormalizationConstants. // See SetSHEMapConstants() in "Stupid Spherical Harmonics Tricks". static float[] invNormConsts = { 1 / c0, -1 / c1, 1 / c1, -1 / c1, 1 / c2, -1 / c2, 1 / c3, -1 / c2, 1 / c4 }; // Undoes coefficient rescaling due to the convolution with the clamped cosine kernel // to obtain the canonical values of SH. public static SphericalHarmonicsL2 UndoCosineRescaling(SphericalHarmonicsL2 sh) { for (int c = 0; c < 3; c++) { for (int i = 0; i < 9; i++) { sh[c, i] *= invNormConsts[i]; } } return sh; } const float k0 = 0.28209479177387814347f; // {0, 0} : 1/2 * sqrt(1/Pi) const float k1 = 0.48860251190291992159f; // {1, 0} : 1/2 * sqrt(3/Pi) const float k2 = 1.09254843059207907054f; // {2,-2} : 1/2 * sqrt(15/Pi) const float k3 = 0.31539156525252000603f; // {2, 0} : 1/4 * sqrt(5/Pi) const float k4 = 0.54627421529603953527f; // {2, 2} : 1/4 * sqrt(15/Pi) static float[] ks = { k0, -k1, k1, -k1, k2, -k2, k3, -k2, k4 }; // Premultiplies the SH with the polynomial coefficients of SH basis functions, // which avoids using any constants during SH evaluation. // The resulting evaluation takes the form: // (c_0 - c_6) + c_1 y + c_2 z + c_3 x + c_4 x y + c_5 y z + c_6 (3 z^2) + c_7 x z + c_8 (x^2 - y^2) public static SphericalHarmonicsL2 PremultiplyCoefficients(SphericalHarmonicsL2 sh) { for (int c = 0; c < 3; c++) { for (int i = 0; i < 9; i++) { sh[c, i] *= ks[i]; } } return sh; } public static SphericalHarmonicsL2 RescaleCoefficients(SphericalHarmonicsL2 sh, float scalar) { for (int c = 0; c < 3; c++) { for (int i = 0; i < 9; i++) { sh[c, i] *= scalar; } } return sh; } // Packs coefficients so that we can use Peter-Pike Sloan's shader code. // Does not perform premultiplication with coefficients of SH basis functions. // See SetSHEMapConstants() in "Stupid Spherical Harmonics Tricks". public static void PackCoefficients(Vector4[] packedCoeffs, SphericalHarmonicsL2 sh) { // Constant + linear for (int c = 0; c < 3; c++) { packedCoeffs[c].Set(sh[c, 3], sh[c, 1], sh[c, 2], sh[c, 0] - sh[c, 6]); } // Quadratic (4/5) for (int c = 0; c < 3; c++) { packedCoeffs[3 + c].Set(sh[c, 4], sh[c, 5], sh[c, 6] * 3.0f, sh[c, 7]); } // Quadratic (5) packedCoeffs[6].Set(sh[0, 8], sh[1, 8], sh[2, 8], 1.0f); } } }