#ifndef UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED #define UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/CommonLighting.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/VolumeRendering.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Sampling/Sampling.hlsl" #include "Packages/com.unity.render-pipelines.high-definition/Runtime/ShaderLibrary/ShaderVariablesGlobal.hlsl" #include "Packages/com.unity.render-pipelines.high-definition/Runtime/Sky/PhysicallyBasedSky/ShaderVariablesPhysicallyBasedSky.cs.hlsl" TEXTURE2D(_GroundIrradianceTexture); // Emulate a 4D texture with a "deep" 3D texture. TEXTURE3D(_AirSingleScatteringTexture); TEXTURE3D(_AerosolSingleScatteringTexture); TEXTURE3D(_MultipleScatteringTexture); #ifndef UNITY_SHADER_VARIABLES_INCLUDED SAMPLER(s_linear_clamp_sampler); #endif // Computes (a^2 - b^2) in a numerically stable way. float DifferenceOfSquares(float a, float b) { return (a - b) * (a + b); } float3 AirScatter(float height) { return _AirSeaLevelScattering.rgb * exp(-height * _AirDensityFalloff); } float AirPhase(float LdotV) { return RayleighPhaseFunction(-LdotV); } float3 AerosolScatter(float height) { return _AerosolSeaLevelScattering.rgb * exp(-height * _AerosolDensityFalloff); } float AerosolPhase(float LdotV) { return _AerosolPhasePartConstant * CornetteShanksPhasePartVarying(_AerosolAnisotropy, -LdotV); } // For multiple scattering. // Assume that, after multiple bounces, the effect of anisotropy is lost. float3 AtmospherePhaseScatter(float LdotV, float height) { return AirPhase(LdotV) * (AirScatter(height) + AerosolScatter(height)); } // Returns the closest hit in X and the farthest hit in Y. // Returns a negative number if there's no intersection. // (result.y >= 0) indicates success. // (result.x < 0) indicates that we are inside the sphere. float2 IntersectSphere(float sphereRadius, float cosChi, float radialDistance, float rcpRadialDistance) { // r_o = float2(0, r) // r_d = float2(sinChi, cosChi) // p_s = r_o + t * r_d // // R^2 = dot(r_o + t * r_d, r_o + t * r_d) // R^2 = ((r_o + t * r_d).x)^2 + ((r_o + t * r_d).y)^2 // R^2 = t^2 + 2 * dot(r_o, r_d) + dot(r_o, r_o) // // t^2 + 2 * dot(r_o, r_d) + dot(r_o, r_o) - R^2 = 0 // // Solve: t^2 + (2 * b) * t + c = 0, where // b = r * cosChi, // c = r^2 - R^2. // // t = (-2 * b + sqrt((2 * b)^2 - 4 * c)) / 2 // t = -b + sqrt(b^2 - c) // t = -b + sqrt((r * cosChi)^2 - (r^2 - R^2)) // t = -b + r * sqrt((cosChi)^2 - 1 + (R/r)^2) // t = -b + r * sqrt(d) // t = r * (-cosChi + sqrt(d)) // // Why do we do this? Because it is more numerically robust. float d = Sq(sphereRadius * rcpRadialDistance) - saturate(1 - cosChi * cosChi); // Return the value of 'd' for debugging purposes. return (d < 0) ? d : (radialDistance * float2(-cosChi - sqrt(d), -cosChi + sqrt(d))); } // TODO: remove. float2 IntersectSphere(float sphereRadius, float cosChi, float radialDistance) { return IntersectSphere(sphereRadius, cosChi, radialDistance, rcp(radialDistance)); } float2 IntersectRayCylinder(float3 cylAxis, float cylRadius, float radialDistance, float3 rayDir) { // rayOrigin = {0, 0, r}. float r = radialDistance; float x = dot(cylAxis, rayDir); // Solve: t^2 + 2 * (b / a) * t + (c / a) = 0. float a = saturate(1.0 - x * x); float b = rcp(a) * (rayDir.z - x * cylAxis.z); float c = rcp(a) * (saturate(1 - cylAxis.z * cylAxis.z) - Sq(cylRadius * rcp(r))); float d = b * b - c; return ((abs(a) < FLT_EPS) || (d < 0)) ? -1 : r * float2(-b - sqrt(d), -b + sqrt(d)); } float MapQuadraticHeight(float height) { // TODO: we should adjust sub-texel coordinates // to account for the non-linear height distribution. return sqrt(height * _RcpAtmosphericDepth); } // Returns the height. float UnmapQuadraticHeight(float v) { return (v * v) * _AtmosphericDepth; } float ComputeCosineOfHorizonAngle(float r) { float R = _PlanetaryRadius; float sinHor = R * rcp(r); return -sqrt(saturate(1 - sinHor * sinHor)); } // We use the parametrization from "Outdoor Light Scattering Sample Update" by E. Yusov. float2 MapAerialPerspective(float cosChi, float height, float texelSize) { float R = _PlanetaryRadius; float r = height + R; float cosHor = ComputeCosineOfHorizonAngle(r); // Above horizon? float s = FastSign(cosChi - cosHor); // float x = (cosChi - cosHor) * rcp(1 - s * cosHor); // in [-1, 1] // float m = pow(abs(x), 0.5); float m = sqrt(abs(cosChi - cosHor)) * rsqrt(1 - s * cosHor); // Lighting must be discontinuous across the horizon. // Thus, we offset by half a texel to avoid interpolation artifacts. m = s * max(m, texelSize); float u = saturate(m * 0.5 + 0.5); float v = MapQuadraticHeight(height); return float2(u, v); } float2 MapAerialPerspectiveAboveHorizon(float cosChi, float height) { float R = _PlanetaryRadius; float r = height + R; float cosHor = ComputeCosineOfHorizonAngle(r); float u = saturate(sqrt(cosChi - cosHor) * rsqrt(1 - cosHor)); float v = MapQuadraticHeight(height); return float2(u, v); } // returns {cosChi, height}. float2 UnmapAerialPerspective(float2 uv) { float height = UnmapQuadraticHeight(uv.y); float R = _PlanetaryRadius; float r = height + R; float cosHor = ComputeCosineOfHorizonAngle(r); float m = uv.x * 2 - 1; float s = FastSign(m); float x = s * (m * m); float cosChi = x * (1 - s * cosHor) + cosHor; cosChi += s * FLT_EPS; // Avoid the (cosChi == cosHor) case due to the FP arithmetic return float2(cosChi, height); } float2 UnmapAerialPerspectiveAboveHorizon(float2 uv) { float height = UnmapQuadraticHeight(uv.y); float R = _PlanetaryRadius; float r = height + R; float cosHor = ComputeCosineOfHorizonAngle(r); float x = (uv.x * uv.x); float cosChi = x * (1 - cosHor) + cosHor; cosChi += FLT_EPS; // Avoid the (cosChi == cosHor) case due to the FP arithmetic return float2(cosChi, height); } float ChapmanUpperApprox(float z, float cosTheta) { float c = cosTheta; float n = 0.761643 * ((1 + 2 * z) - (c * c * z)); float d = c * z + sqrt(z * (1.47721 + 0.273828 * (c * c * z))); return 0.5 * c + (n * rcp(d)); } float ChapmanHorizontal(float z) { float r = rsqrt(z); float s = z * r; // sqrt(z) return 0.626657 * (r + 2 * s); } // z = (n * r), Z = (n * R). float RescaledChapmanFunction(float z, float Z, float cosTheta) { float sinTheta = sqrt(saturate(1 - cosTheta * cosTheta)); // cos(Pi - theta) = -cos(theta). float ch = ChapmanUpperApprox(z, abs(cosTheta)) * exp(Z - z); // Rescaling adds 'exp' if (cosTheta < 0) { // z_0 = n * r_0 = (n * r) * sin(theta) = z * sin(theta). // Ch(z, theta) = 2 * exp(z - z_0) * Ch(z_0, Pi/2) - Ch(z, Pi - theta). float z_0 = z * sinTheta; float a = 2 * ChapmanHorizontal(z_0); float b = exp(Z - z_0); // Rescaling cancels out 'z' and adds 'Z' float ch_2 = a * b; ch = ch_2 - ch; } return ch; } float3 ComputeAtmosphericOpticalDepth(float r, float cosTheta, bool aboveHorizon) { const float2 n = float2(_AirDensityFalloff, _AerosolDensityFalloff); const float2 H = float2(_AirScaleHeight, _AerosolScaleHeight); const float R = _PlanetaryRadius; float2 z = n * r; float2 Z = n * R; float sinTheta = sqrt(saturate(1 - cosTheta * cosTheta)); float2 ch; ch.x = ChapmanUpperApprox(z.x, abs(cosTheta)) * exp(Z.x - z.x); // Rescaling adds 'exp' ch.y = ChapmanUpperApprox(z.y, abs(cosTheta)) * exp(Z.y - z.y); // Rescaling adds 'exp' if (!aboveHorizon) // Below horizon, intersect sphere { float sinGamma = (r / R) * sinTheta; float cosGamma = sqrt(saturate(1 - sinGamma * sinGamma)); float2 ch_2; ch_2.x = ChapmanUpperApprox(Z.x, cosGamma); // No need to rescale ch_2.y = ChapmanUpperApprox(Z.y, cosGamma); // No need to rescale ch = ch_2 - ch; } else if (cosTheta < 0) // Above horizon, lower hemisphere { // z_0 = n * r_0 = (n * r) * sin(theta) = z * sin(theta). // Ch(z, theta) = 2 * exp(z - z_0) * Ch(z_0, Pi/2) - Ch(z, Pi - theta). float2 z_0 = z * sinTheta; float2 b = exp(Z - z_0); // Rescaling cancels out 'z' and adds 'Z' float2 a; a.x = 2 * ChapmanHorizontal(z_0.x); a.y = 2 * ChapmanHorizontal(z_0.y); float2 ch_2 = a * b; ch = ch_2 - ch; } float2 optDepth = ch * H; return optDepth.x * _AirSeaLevelExtinction.xyz + optDepth.y * _AerosolSeaLevelExtinction; } float3 ComputeAtmosphericOpticalDepth1(float r, float cosTheta) { float cosHor = ComputeCosineOfHorizonAngle(r); return ComputeAtmosphericOpticalDepth(r, cosTheta, cosTheta >= cosHor); } // Map: [cos(120 deg), 1] -> [0, 1]. // Allocate more samples around (Pi/2). float MapCosineOfZenithAngle(float NdotL) { float x = max(NdotL, -0.5); float s = CopySign(sqrt(abs(x)), x); // [-0.70710678, 1] return saturate(0.585786 * s + 0.414214); } // Map: [0, 1] -> [-0.1975, 1]. float UnmapCosineOfZenithAngle(float u) { float s = 1.70711 * u - 0.707107; return CopySign(s * s, s); } float3 SampleGroundIrradianceTexture(float NdotL) { float2 uv = float2(MapCosineOfZenithAngle(NdotL), 0); return SAMPLE_TEXTURE2D_LOD(_GroundIrradianceTexture, s_linear_clamp_sampler, uv, 0).rgb; } struct TexCoord4D { float u, v, w0, w1, a; }; TexCoord4D ConvertPositionAndOrientationToTexCoords(float height, float NdotV, float NdotL, float phiL) { const uint zTexSize = PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_Z; const uint zTexCnt = PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_W; float cosChi = -NdotV; float u = MapAerialPerspective(cosChi, height, rcp(PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_X)).x; float v = MapAerialPerspective(cosChi, height, rcp(PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_X)).y; float w = (0.5 + (INV_PI * phiL) * (zTexSize - 1)) * rcp(zTexSize); // [0.5 / zts, 1 - 0.5 / zts] float k = MapCosineOfZenithAngle(NdotL) * (zTexCnt - 1); // [0, ztc - 1] TexCoord4D texCoord; texCoord.u = u; texCoord.v = v; // Emulate a 4D texture with a "deep" 3D texture. texCoord.w0 = (floor(k) + w) * rcp(zTexCnt); texCoord.w1 = (ceil(k) + w) * rcp(zTexCnt); texCoord.a = frac(k); return texCoord; } // O must be planet-relative. float2 IntersectAtmosphere(float3 O, float3 V, out float3 N, out float r) { const float A = _AtmosphericRadius; float3 P = O; N = normalize(P); r = length(P); float2 t = IntersectSphere(A, dot(N, -V), r); if (t.y >= 0) // Success? { // If we are already inside, do not step back. t.x = max(t.x, 0); if (t.x > 0) { P = P + t.x * -V; N = normalize(P); r = A; } } return t; } #endif // UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED