#pragma kernel BitonicSort128 BITONIC_SORT=BitonicSort128 ELEMENTS_COUNT=128 ITERATIONS_COUNT=1 FINAL_PASS=1 #pragma kernel BitonicSort1024 BITONIC_SORT=BitonicSort1024 ELEMENTS_COUNT=1024 ITERATIONS_COUNT=2 FINAL_PASS=1 #pragma kernel BitonicSort4096 BITONIC_SORT=BitonicSort4096 ELEMENTS_COUNT=4096 ITERATIONS_COUNT=2 FINAL_PASS=1 #pragma kernel BitonicPrePass BITONIC_SORT=BitonicPrePass ELEMENTS_COUNT=4096 ITERATIONS_COUNT=2 FINAL_PASS=0 #pragma kernel MergePass MERGE_PASS=MergePass FINAL_PASS=0 #pragma kernel MergeFinalPass MERGE_PASS=MergeFinalPass FINAL_PASS=1 #pragma multi_compile __ VFX_SORT_USE_ELEMENT_COUNT_BUFFER #include "HLSLSupport.cginc" #define DECREASING_ORDER 1 #define DEBUG_NO_INFINITE_LOOP 0 #ifndef ELEMENTS_COUNT #define ELEMENTS_COUNT 1024 #endif #ifndef ITERATIONS_COUNT #define ITERATIONS_COUNT 1 #endif // 1 to use the alternative representation of the bitonic network: // No comparison flipping but dedicated first sub pass. // see https://en.wikipedia.org/wiki/Bitonic_sorter #if defined(SHADER_API_METAL) //Workaround BitonicSort128 doesn't behave as expected, actual cause isn't identified yet. #define USE_ALTERNATE_BITONIC_NETWORK 1 #else #define USE_ALTERNATE_BITONIC_NETWORK 0 #endif #define ELEMENTS_PER_THREAD (2 * ITERATIONS_COUNT) #define BITONIC_THREADS_COUNT ELEMENTS_COUNT / ELEMENTS_PER_THREAD #define MERGE_THREADS_COUNT ELEMENTS_COUNT #define HALF_SCRATCH_SIZE ELEMENTS_COUNT #define LDS_VALUES_OFFSET HALF_SCRATCH_SIZE #define SCRATCH_SIZE (HALF_SCRATCH_SIZE << 1) #define ITERATION_INDEX(id,it) ((it) * BITONIC_THREADS_COUNT + (id)) #define DST_INDEX(groupId,threadId) (groupId * BITONIC_THREADS_COUNT * ELEMENTS_PER_THREAD + threadId) #if DECREASING_ORDER #define REJECTED_VALUE asfloat(0xff7fffff) // -MAX_FLOAT #else #define REJECTED_VALUE asfloat(0x7f7fffff) // MAX_FLOAT #endif #pragma warning(disable : 3557) // disable warning for auto unrolling of single iteration loop struct KVP { float key; uint value; }; StructuredBuffer inputSequence; #if FINAL_PASS RWStructuredBuffer sortedSequence; #else RWStructuredBuffer sortedSequence; #endif ByteAddressBuffer deadElementCount; #ifdef VFX_SORT_USE_ELEMENT_COUNT_BUFFER #define elementCountBuffer deadElementCount #endif // Layout of the scratch memory is as follows: // First all keys // Then all values groupshared float scratch[SCRATCH_SIZE]; CBUFFER_START(SortConstants) uint elementCount; uint elementCountOffset; CBUFFER_END uint GetElementCount() { #ifdef VFX_SORT_USE_ELEMENT_COUNT_BUFFER return elementCountBuffer.Load(elementCountOffset); #else return elementCount - deadElementCount.Load(elementCountOffset); #endif } bool CompareKeys(float key0, float key1) { #if DECREASING_ORDER return key0 > key1; #else return key0 < key1; #endif } uint GetLDSIndex(uint index) { return index; } void LoadFromMemory(uint ldsIndex,uint memIndex) { KVP kvp = { REJECTED_VALUE, 0 }; if (memIndex < GetElementCount()) kvp = inputSequence[memIndex]; uint paddedLdsIndex = GetLDSIndex(ldsIndex); scratch[paddedLdsIndex] = kvp.key; scratch[paddedLdsIndex + LDS_VALUES_OFFSET] = asfloat(kvp.value); } void StoreToMemory(uint memIndex, uint ldsIndex) { if (memIndex < GetElementCount()) { uint paddedLdsIndex = GetLDSIndex(ldsIndex); uint value = asuint(scratch[paddedLdsIndex + LDS_VALUES_OFFSET]); #if FINAL_PASS sortedSequence[memIndex] = value; #else float key = scratch[paddedLdsIndex]; KVP kvp = { key, value }; sortedSequence[memIndex] = kvp; #endif } } // Bitonic sort on small chunks of kvp of size ELEMENTS_COUNT - execute in O(log²(ELEMENTS_COUNT)) [numthreads(BITONIC_THREADS_COUNT,1,1)] void BITONIC_SORT(uint id : SV_GroupIndex, uint3 groupId : SV_GroupID) { // Skip useless groups if (groupId.x > GetElementCount() / ELEMENTS_COUNT) return; // Load data from memory to LDS //[unroll] for (uint i = 0; i < ELEMENTS_PER_THREAD; ++i) { uint index = BITONIC_THREADS_COUNT * i + id; uint memIndex = DST_INDEX(groupId.x, index); LoadFromMemory(index, memIndex); } GroupMemoryBarrierWithGroupSync(); // LDS Writes visible for (uint step = 1; step < ELEMENTS_COUNT; step <<= 1) // O(log(ELEMENTS_COUNT)) for (uint subStep = step; subStep != 0; subStep >>= 1) // O(log(step)) { [unroll] for (uint i = 0; i < ITERATIONS_COUNT; ++i) { uint index = ITERATION_INDEX(id,i); uint lsb = index & (subStep - 1); uint index0 = (2 * index) - lsb; uint index1 = index0 + subStep; #if USE_ALTERNATE_BITONIC_NETWORK if (subStep == step) index1 += step - (2 * lsb) - 1; #endif float key0 = scratch[index0]; float key1 = scratch[index1]; #if USE_ALTERNATE_BITONIC_NETWORK bool reverse = false; #else bool reverse = index & step; #endif if (CompareKeys(key1,key0) != reverse) { // swap keys scratch[index0] = key1; scratch[index1] = key0; // swap values float value0 = scratch[index0 + LDS_VALUES_OFFSET]; scratch[index0 + LDS_VALUES_OFFSET] = scratch[index1 + LDS_VALUES_OFFSET]; scratch[index1 + LDS_VALUES_OFFSET] = value0; } } GroupMemoryBarrierWithGroupSync(); // LDS Writes visible } // Store sorted data from LDS to memory //[unroll] for (uint j = 0; j < ELEMENTS_PER_THREAD; ++j) { uint index = BITONIC_THREADS_COUNT * j + id; //(id / 32) * 64 * ITERATIONS_COUNT + (id & 31) + j * 32;//id * ITERATIONS_COUNT * 2 + j; uint memIndex = DST_INDEX(groupId.x, index); StoreToMemory(memIndex, index); } } CBUFFER_START(MergePassConstants) uint subArraySize; uint dispatchWidth; CBUFFER_END float GetKeyWithCheck(uint index) { float result = inputSequence[index].key; if (index >= GetElementCount()) // TODO Handle elementCount more efficiently result = REJECTED_VALUE; return result; } // Merge pass: take N sorted sub arrays as input and output N/2 sorted arrays twice bigger - execute in O(log(subArraySize)) #define NB_THREADS_PER_GROUP_MERGE_PASS 64 [numthreads(NB_THREADS_PER_GROUP_MERGE_PASS, 1, 1)] void MERGE_PASS(uint3 groupId : SV_GroupID, uint3 groupThreadId : SV_GroupThreadID) { uint id = groupThreadId.x + groupId.x * NB_THREADS_PER_GROUP_MERGE_PASS + groupId.y * dispatchWidth * NB_THREADS_PER_GROUP_MERGE_PASS; if (id >= GetElementCount()) return; const int arraySize = subArraySize << 1; const int arrayStart = arraySize * (id / arraySize); // If the current array considered is less than one half filled (due to element count), we can copy it directly as it is already sorted if (GetElementCount() - (uint)arrayStart <= subArraySize) { #if FINAL_PASS sortedSequence[id] = inputSequence[id].value; #else sortedSequence[id] = inputSequence[id]; #endif return; } const int arrayIndex = id - arrayStart; const int lastIndex = subArraySize - 1; // determine initial frame of the window int2 window = uint2(max(0, arrayIndex - (int)subArraySize), min(arrayIndex, lastIndex)); int index0, index1; float key0, key1; bool reverse = false; bool done = false; #if DEBUG_NO_INFINITE_LOOP uint nbIter = 0; #endif // Binary search - O(log(subArraySize)) do { int windowIndex = (window.x + window.y + 1) >> 1; int i0 = min(lastIndex, windowIndex); int i1 = min(lastIndex, arrayIndex - windowIndex); index0 = i0 + arrayStart; index1 = i1 + arrayStart + subArraySize; key0 = inputSequence[index0].key; key1 = GetKeyWithCheck(index1); if (i0 + i1 == arrayIndex) { if (i0 > 0 && CompareKeys(key1, inputSequence[max(0, index0 - 1)].key)) window.y = windowIndex - 1; // move window left else if (i1 > 0 && CompareKeys(key0, GetKeyWithCheck(max(0, index1 - 1)))) window.x = windowIndex + (windowIndex == lastIndex ? 2 : 1); // move window right (Special handling at the right bound so that i1 can go down to 0) else done = true; } else // special case handling { reverse = true; done = true; } #if DEBUG_NO_INFINITE_LOOP if (++nbIter > 2048) { key0 = key1 = 0.5f; break; } #endif } while (!done); // Select left or right: Must handle special case for equality bool select0 = (key0 == key1 && (id & 1)) || (CompareKeys(key0,key1) != reverse); uint value = inputSequence[(select0 ? index0 : index1)].value; #if FINAL_PASS sortedSequence[id] = value; #else float key = select0 ? key0 : key1; KVP kvp = { key, value }; sortedSequence[id] = kvp; #endif }